(2013?金华模拟)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB∥CD,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB

(2013?金华模拟)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB∥CD,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.(Ⅰ)证明:MC∥平... (2013?金华模拟)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB∥CD,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.(Ⅰ)证明:MC∥平面PAD;(Ⅱ)求直线MC与平面PAC所成角的余弦值. 展开
 我来答
西瓜4兗
推荐于2016-04-08 · 超过51用户采纳过TA的回答
知道答主
回答量:110
采纳率:0%
帮助的人:123万
展开全部
(Ⅰ)如图,取PA的中点E,连接ME,DE,
∵△PAB中,M、E分别为PB、PA的中点,∴EM∥AB且EM=
1
2
AB.
又∵AB∥DC,且DC=
1
2
AB,∴EM∥DC,且EM=DC
∴四边形DCME为平行四边形,∴MC∥DE,
又∵MC?平面PAD,DE?平面PAD,所以MC∥平面PAD;
(Ⅱ)取PC中点N,连接MN,则MN∥BC
∵PA⊥平面ABCD,∴PA⊥BC,
又∵AC2+BC2=2+2=AB2,∴AC⊥BC
∵PA∩AC=A,PA⊥BC,AC⊥BC.∴BC⊥平面PAC,
∵MN为△PBC的中位线,可得BC∥MN
∴MN⊥平面PAC,可得∠MCN为直线MC与平面PAC所成角,
∵NC=
1
2
PC=
3
2
,MC=
1
2
PB=
5
2

∴Rt△MCN中,cos∠MCN=
NC
MC
=
15
5

即直线MC与平面PAC所成角的余弦值为
15
5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式