如图,在边长为1的正方形组成的网格中,三角形ABC的顶点均在格点上,点A,B,C的坐标分别是A(-
如图,在边长为1的正方形组成的网格中,三角形ABC的顶点均在格点上,点A,B,C的坐标分别是A(-2,3),B(-1,2),C(-3,1)三角形ABC绕点O顺时针旋转90...
如图,在边长为1的正方形组成的网格中,三角形ABC的顶点均在格点上,点A,B,C的坐标分别是A(-2,3),B(-1,2),C(-3,1)三角形ABC绕点O顺时针旋转90度后得到三角形A1B1C1 在y轴上找一点D,使DB+DB1的值最小,并求出D点坐标
展开
1个回答
展开全部
点B(-1,2)绕原点O顺时针旋转90°后得点B1
则,点B1在第一象限,BO=BO,∠BOB1=90°
BB1=√2BO
设B1(xb,yb)
B1O=√(xb²+yb²)=BO=√[(-1)²+2²]=√5
BB1=√[(xb+1)²+(yb-2)²]=√2BO=√10
解之得:xb=2,yb=1或xb=-2,yb=-1(舍去)
B1(2,1)
要在y轴上找一点D使DB+DB1最小,只能是BB1连线与y轴的交点
设BB1所在直线方程为:y=kx+b
将B、B1的坐标分别代入方程:
-k+b=2
2k+b=1
解之得:k=-1/3,b=5/3
则所求点的坐标D(0,5/3)
则,点B1在第一象限,BO=BO,∠BOB1=90°
BB1=√2BO
设B1(xb,yb)
B1O=√(xb²+yb²)=BO=√[(-1)²+2²]=√5
BB1=√[(xb+1)²+(yb-2)²]=√2BO=√10
解之得:xb=2,yb=1或xb=-2,yb=-1(舍去)
B1(2,1)
要在y轴上找一点D使DB+DB1最小,只能是BB1连线与y轴的交点
设BB1所在直线方程为:y=kx+b
将B、B1的坐标分别代入方程:
-k+b=2
2k+b=1
解之得:k=-1/3,b=5/3
则所求点的坐标D(0,5/3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询