(2014?黄浦区二模)如图,在平行四边形ABCD中,AB=4,BC=2,∠A=60°.(1)求证:BD⊥BC;(2)延长CB

(2014?黄浦区二模)如图,在平行四边形ABCD中,AB=4,BC=2,∠A=60°.(1)求证:BD⊥BC;(2)延长CB至G,使BG=BC,E是边AB上一点,F是线... (2014?黄浦区二模)如图,在平行四边形ABCD中,AB=4,BC=2,∠A=60°.(1)求证:BD⊥BC;(2)延长CB至G,使BG=BC,E是边AB上一点,F是线段CG上一点,且∠EDF=60°,设AE=x,CF=y.①当点F在线段BC上时(点F不与点B、C重合),求y关于x的函数解析式,并写出定义域;②当以AE为半径的⊙E与以CF为半径的⊙F相切时,求x的值. 展开
 我来答
猪月月2210
2014-10-23 · 超过57用户采纳过TA的回答
知道答主
回答量:115
采纳率:0%
帮助的人:125万
展开全部
解:(1)过点D作DH⊥AB,垂足为H,
在Rt△AHD中,AH=AD?cosA=BC?cosA=1,
AH
AD
1
2
BC
CD
1
2

AH
AD
BC
CD
,即
AH
BC
AD
CD

又∵∠C=∠A=60°,
∴△AHD∽△CBD,
∴∠CBD=∠AHD=90°,
∴BD⊥BC;

(2)①∵AD∥BC,
∴∠ADB=∠DBC=90°,
∵∠BDH+∠HDA=90°,∠A+∠HDA=90°,
∴∠BDH=∠A=60°,
∵∠EDF=60°,
∴∠BDH=∠EDF,即∠EDH+∠BDE=∠FDB+∠BDE,
∴∠EDH=∠FDB,
又∵∠EHD=∠CBD=90°,
∴△EHD∽△FBD,
DH
BD
EH
BF

3
2
3
x?1
2?y

∴y=4-2x(1<x<2);
②连接EF,分三种情况:
1°当点F在线段BC(点F不与点B、C重合)上时,
∵△EHD∽△FBD,
DH
BD
DE
DF
.即
DH
DE
BD
DF

又∵∠BDH=∠EDF,
∴△BDH∽△FDE,
∴∠DEF=90°,
在Rt△EDH中,DE=
EH2+DH2
x2?2x+4

EF=DE?tan60°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式