∫1/(x^4+1)dx怎么求?
展开全部
具体回答如图:
求不定积分时,被积函数中的常数因子可以提到积分号外面来。求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
扩展资料:
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
从而定义积分。在一维实空间中,一个区间A= [a,b] 的勒贝格测度μ(A)是区间的右端值减去左端值,b−a。这使得勒贝格积分和正常意义上的黎曼积分相兼容。
在更复杂的情况下,积分的集合可以更加复杂,不再是区间,甚至不再是区间的交集或并集,其“长度”则由测度来给出。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
参考资料来源:百度百科——不定积分
展开全部
∫dx/(x^4+1)=∫dx/[(x^2+1)^2-2x^2]
=∫dx/[(x^2+1-√2x)(x^2+1+√2x)]
=∫(1/2√2x)[ (x^2+1+√2x)-(x^2+1-√2x)]dx/[(x^2+1+√2x)(x^2+1-√2x)]
=∫(1/(2√2x))dx/(x^2+1-√2x) - ∫(1/(2√2x))dx/(x^2+1+√2x)
=(1/(2√2))[∫(1/2)d(x^2+1-√2x)/(x^2+1-√2x) +∫(1/2)*√2dx/(x^2+1-√2x)
-∫(1/2)d(x^2+1+√2x)/(x^2+1+√2x)+∫(1/2)*√2dx/(x^2+1+√2x)]
=(1/(2√2))*[(1/2)(ln|(x^2+1-√2x)|-ln|(x^2+1+√2x)|)
+(1/4)∫dx/[(x-√2/2)^2+1/2] +(1/4)∫dx/[(x+√2/2)^2+1/2]]
=(√2/4)[(1/2)(ln|(x^2+1-√2x)| -ln|(x^2+1+√2x)|)
+(√2/4)arctan(√2x-1)
+(√2/4)arctan(√2x+1)]+C
=(√2/8)[ln|(x^2+1-√2x)| -ln|(x^2+1+√2x)|)]
+(1/8)arctan(√2x-1)
+(1/8)arctan(√2x+1)+C
=∫dx/[(x^2+1-√2x)(x^2+1+√2x)]
=∫(1/2√2x)[ (x^2+1+√2x)-(x^2+1-√2x)]dx/[(x^2+1+√2x)(x^2+1-√2x)]
=∫(1/(2√2x))dx/(x^2+1-√2x) - ∫(1/(2√2x))dx/(x^2+1+√2x)
=(1/(2√2))[∫(1/2)d(x^2+1-√2x)/(x^2+1-√2x) +∫(1/2)*√2dx/(x^2+1-√2x)
-∫(1/2)d(x^2+1+√2x)/(x^2+1+√2x)+∫(1/2)*√2dx/(x^2+1+√2x)]
=(1/(2√2))*[(1/2)(ln|(x^2+1-√2x)|-ln|(x^2+1+√2x)|)
+(1/4)∫dx/[(x-√2/2)^2+1/2] +(1/4)∫dx/[(x+√2/2)^2+1/2]]
=(√2/4)[(1/2)(ln|(x^2+1-√2x)| -ln|(x^2+1+√2x)|)
+(√2/4)arctan(√2x-1)
+(√2/4)arctan(√2x+1)]+C
=(√2/8)[ln|(x^2+1-√2x)| -ln|(x^2+1+√2x)|)]
+(1/8)arctan(√2x-1)
+(1/8)arctan(√2x+1)+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询