给定四边形的四条边长,什么情况下面积最大
2个回答
展开全部
解:给定四条边的长度,当且仅当该四边形内接于圆时,面积最大。
证明:
设 四边形的四条边为a,b,c,d.p=(a+b+c+d)/2 为半周长.
对于普通四边形,如果其一对内角和为θ,由Bretschneider公式,
此四边形面积S=√[(p-a)(p-b)(p-c)(p-d)-abcdcos^2(θ/2)].
圆内接四边形其一对内角和为θ=180度,
由Bretschneider公式,
此四边形面积S=√[(p-a)(p-b)(p-c)(p-d)]={[(p-a)(p-b)(p-c)(p-d)]^(1/4)}^2
证明:
设 四边形的四条边为a,b,c,d.p=(a+b+c+d)/2 为半周长.
对于普通四边形,如果其一对内角和为θ,由Bretschneider公式,
此四边形面积S=√[(p-a)(p-b)(p-c)(p-d)-abcdcos^2(θ/2)].
圆内接四边形其一对内角和为θ=180度,
由Bretschneider公式,
此四边形面积S=√[(p-a)(p-b)(p-c)(p-d)]={[(p-a)(p-b)(p-c)(p-d)]^(1/4)}^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询