3个回答
展开全部
x+y+z=1;x方+y方+z方=2;x立方+y立方+z立方=3 求x的四次方+y的四次方+z的四次方
【解】
首先,得知道一个公式:(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz.....①
(x+y+z)(x^2+y^2+z^2)=x^3+y^3+z^3+xy(x+y)+xz(x+z)+yz(y+z)
=3+xy(1-z)+xz(1-y)+yz(1-x)
=3+xy+yz+xz-3xyz
又由①:xy+yz+xz=-1/2
所以 (x+y+z)(x^2+y^2+z^2)=3+(-1/2)-3xyz=2 , xyz=1/6
(x+y+z)(x^3+y^3+z^3)=x^4+y^4+z^4+xy(x^2+y^2)+yz(y^2+z^2)+xz(x^2+z^2)
=x^4+y^4+z^4+xy(2-z^2)+yz(2-x^2)+xz(2-y^2)
=x^4+y^4+z^4+2xy+2yz+2xz-xyz(x+y+z)
=x^4+y^4+z^4+(-1)-1/6
=3
所以x^4+y^4+z^4=3+1+1/6=25/6.
【解】
首先,得知道一个公式:(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz.....①
(x+y+z)(x^2+y^2+z^2)=x^3+y^3+z^3+xy(x+y)+xz(x+z)+yz(y+z)
=3+xy(1-z)+xz(1-y)+yz(1-x)
=3+xy+yz+xz-3xyz
又由①:xy+yz+xz=-1/2
所以 (x+y+z)(x^2+y^2+z^2)=3+(-1/2)-3xyz=2 , xyz=1/6
(x+y+z)(x^3+y^3+z^3)=x^4+y^4+z^4+xy(x^2+y^2)+yz(y^2+z^2)+xz(x^2+z^2)
=x^4+y^4+z^4+xy(2-z^2)+yz(2-x^2)+xz(2-y^2)
=x^4+y^4+z^4+2xy+2yz+2xz-xyz(x+y+z)
=x^4+y^4+z^4+(-1)-1/6
=3
所以x^4+y^4+z^4=3+1+1/6=25/6.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询