若关于x的方程|x|/(x-1)=kx^2有四个不同的实数根,求k取值范围 80
为什么我直接画y=|x|/(x-1)与y=kx^2的图像不对啊图为y=|x|/(x-1),看图怎么也不可能与y=kx^2有4个交点啊...
为什么我直接画y=|x|/(x-1)与y=kx^2的图像不对啊 图为y=|x|/(x-1),看图怎么也不可能与y=kx^2有4个交点啊
展开
2016-02-02
展开全部
解
对于方程|x|/(x-1)=kx^2
显然,x≠1
x=0是他的一个根
又由于方程有四个不同的实数根
因此除x=0以外还应当有三个实数根
当x≠0时,方程变为k=1/[|x|(x-1)]
由于x≠0、k=0时方程无解
因此k≠0
于是方程再次变形为
|x|(x-1)=1/k
令y=|x|(x-1) 则有
① y=x(x-1) =x²-x=(x-1/2)²-1/4 (x>0 )
② y=-x(x-1) =-x²+x=-(x-1/2)²+1/4 (x<0)
显然① ②是两条分段连接的抛物线,
第①条在坐标系的右半部分(x>0 ),开口向上,顶点为(1/2,-1/4)
第②条在坐标系的左半部分(x<0),开口向下,顶点为(1/2,1/4)但只能取x<0的部分
两段的交点在(0,0)处
显然要使这两段抛物线与直线y=1/k有三个交点必须使
-1/4≤1/k<0 即-4≤k<0
所以使方程|x|/(x-1)=kx^2有四个不同的实数根的k取值范围是[-4,0)
对于方程|x|/(x-1)=kx^2
显然,x≠1
x=0是他的一个根
又由于方程有四个不同的实数根
因此除x=0以外还应当有三个实数根
当x≠0时,方程变为k=1/[|x|(x-1)]
由于x≠0、k=0时方程无解
因此k≠0
于是方程再次变形为
|x|(x-1)=1/k
令y=|x|(x-1) 则有
① y=x(x-1) =x²-x=(x-1/2)²-1/4 (x>0 )
② y=-x(x-1) =-x²+x=-(x-1/2)²+1/4 (x<0)
显然① ②是两条分段连接的抛物线,
第①条在坐标系的右半部分(x>0 ),开口向上,顶点为(1/2,-1/4)
第②条在坐标系的左半部分(x<0),开口向下,顶点为(1/2,1/4)但只能取x<0的部分
两段的交点在(0,0)处
显然要使这两段抛物线与直线y=1/k有三个交点必须使
-1/4≤1/k<0 即-4≤k<0
所以使方程|x|/(x-1)=kx^2有四个不同的实数根的k取值范围是[-4,0)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询