证明:ln2/3+ln3/4+ln4/5+...lnn/(n+1)<n(n-1)/4 n是正整数且n大于1
证明:ln2/3+ln3/4+ln4/5+...lnn/(n+1)<n(n-1)/4n是正整数且n大于1...
证明:ln2/3+ln3/4+ln4/5+...lnn/(n+1)<n(n-1)/4 n是正整数且n大于1
展开
展开全部
先证明引理:lnx<x-1(x>1)
引理的证明:令f(x)=lnx-x+1,那么f'(x)=1/x-1=(1-x)/x<0,∴f(x)单调递减,那么f(x)<f(1)=0,即lnx<x-1(x>1)
回到原题
注意到lnn/(n+1)=2lnn/2(n+1)=lnn²/2(n+1)<(n²-1)/2(n+1)=(n-1)/2
累加即得ln2/3+ln3/4+ln4/5+...lnn/(n+1)<1/2+2/2+3/2+...+(n-1)/2=n(n-1)/4
引理的证明:令f(x)=lnx-x+1,那么f'(x)=1/x-1=(1-x)/x<0,∴f(x)单调递减,那么f(x)<f(1)=0,即lnx<x-1(x>1)
回到原题
注意到lnn/(n+1)=2lnn/2(n+1)=lnn²/2(n+1)<(n²-1)/2(n+1)=(n-1)/2
累加即得ln2/3+ln3/4+ln4/5+...lnn/(n+1)<1/2+2/2+3/2+...+(n-1)/2=n(n-1)/4
展开全部
用数学归纳法
证明:
(1)当n=2时,左边=(ln2)/3
右边=1/2
∵(ln2)/3<(lne)/3=1/3<1/2
∴左边<右边,命题成立
(2)假设n=k(k≥2且k∈Z)时成立
即(ln2)/3+ln(3)/4+.....+(lnk)/(k+1)<[k(k-1)]/4
则n=k+1时
左边=(ln2)/3+ln(3)/4+.....+(lnk)/(k+1)+(lnk+1)/(k+2)
<[k(k-1)]/4+ln(k+1)/(k+2)
<[k(k-1)]/4+1
<[k(k-1)]/4+k/2
=[(k+1)k]/4
则当n=k+1也成立
由(1)(2)可知
原命题成立
证明:
(1)当n=2时,左边=(ln2)/3
右边=1/2
∵(ln2)/3<(lne)/3=1/3<1/2
∴左边<右边,命题成立
(2)假设n=k(k≥2且k∈Z)时成立
即(ln2)/3+ln(3)/4+.....+(lnk)/(k+1)<[k(k-1)]/4
则n=k+1时
左边=(ln2)/3+ln(3)/4+.....+(lnk)/(k+1)+(lnk+1)/(k+2)
<[k(k-1)]/4+ln(k+1)/(k+2)
<[k(k-1)]/4+1
<[k(k-1)]/4+k/2
=[(k+1)k]/4
则当n=k+1也成立
由(1)(2)可知
原命题成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证:ln2/3+ln3/4+ln4/5+...lnn/(n+1)
=(ln2-ln3)+(ln3-ln4)+(ln4-ln5)+...+[lnn-ln(n+1)]
=ln2-ln(n+1)
因n>1 n+1>2
所以ln2-ln(n+1)<0
又因为n(n-1)/4>0
所以原不等式成立
希望能帮到你,祝学习进步O(∩_∩)O
=(ln2-ln3)+(ln3-ln4)+(ln4-ln5)+...+[lnn-ln(n+1)]
=ln2-ln(n+1)
因n>1 n+1>2
所以ln2-ln(n+1)<0
又因为n(n-1)/4>0
所以原不等式成立
希望能帮到你,祝学习进步O(∩_∩)O
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |