4个回答
展开全部
(1)不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式: 。
①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的最大(小)值问题(参见例4)。
函数的性质 指数和对数
(1)定义域、值域、对应法则
(2)单调性
对于任意x1,x2∈D
若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数
若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数
(3)奇偶性
对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数
若f(-x)=-f(x),称f(x)是奇函数
(4)周期性
对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂
数学 选修
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式: 。
①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的最大(小)值问题(参见例4)。
函数的性质 指数和对数
(1)定义域、值域、对应法则
(2)单调性
对于任意x1,x2∈D
若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数
若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数
(3)奇偶性
对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数
若f(-x)=-f(x),称f(x)是奇函数
(4)周期性
对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂
数学 选修
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(x-3)(x-7)<0 , (3-2x)(x+7)<=0,& x+7 不等于0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
-7<X<3第一个的答案,你可以验证一下下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询