已知;如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E上,BG=10
(1)当折痕的另一端F在AB边上时,求⊿EFG的面积。(2)当折痕的另一端F在AD边上时,求折痕GF的长。...
(1)当折痕的另一端F在AB边上时,求⊿EFG的面积。
(2)当折痕的另一端F在AD边上时,求折痕GF的长。 展开
(2)当折痕的另一端F在AD边上时,求折痕GF的长。 展开
5个回答
展开全部
解:(1)过点G作GH⊥AD,则四边形ABGH为矩形,
∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG,
∴EG=BG=10,∠FEG=∠B=90°;
∴EH=6,AE=4,∠AEF+∠HEG=90°,
∵∠AEF+∠AFE=90°,
∴∠HEG=∠AFE,
又∵∠EHG=∠A=90°,
∴△EAF∽△GHE,
∴EF EG =AE GH ,
∴EF=5,
∴S△EFG=1 2 EF•EG=1 2 ×5×10=25.
(2)由图形的折叠可知四边形ABGF≌四边形HEGF,
∴BG=EG,AB=EH,∠BGF=∠EGF,
∵EF∥BG,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG,
∴BG=EF,
∴四边形BGEF为平行四边形,
又∵EF=EG,
∴平行四边形BGEF为菱形;
连接BE,
BE,FG互相垂直平分,
在Rt△EFH中,
EF=BG=10,EH=AB=8,
由勾股定理可得FH=AF=6,
∴AE=AF+EF=16,
∴BE= AE2+AB2 =8 5 ,
∴BO=4 5 ,
∴OG= BG2-BO2 =2 5 ,
∵四边形BGEF是菱形,
∴FG=2OG=4 5 ,
答:折痕GF的长是4 5 .
∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG,
∴EG=BG=10,∠FEG=∠B=90°;
∴EH=6,AE=4,∠AEF+∠HEG=90°,
∵∠AEF+∠AFE=90°,
∴∠HEG=∠AFE,
又∵∠EHG=∠A=90°,
∴△EAF∽△GHE,
∴EF EG =AE GH ,
∴EF=5,
∴S△EFG=1 2 EF•EG=1 2 ×5×10=25.
(2)由图形的折叠可知四边形ABGF≌四边形HEGF,
∴BG=EG,AB=EH,∠BGF=∠EGF,
∵EF∥BG,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG,
∴BG=EF,
∴四边形BGEF为平行四边形,
又∵EF=EG,
∴平行四边形BGEF为菱形;
连接BE,
BE,FG互相垂直平分,
在Rt△EFH中,
EF=BG=10,EH=AB=8,
由勾股定理可得FH=AF=6,
∴AE=AF+EF=16,
∴BE= AE2+AB2 =8 5 ,
∴BO=4 5 ,
∴OG= BG2-BO2 =2 5 ,
∵四边形BGEF是菱形,
∴FG=2OG=4 5 ,
答:折痕GF的长是4 5 .
东莞大凡
2024-11-19 广告
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研...
点击进入详情页
本回答由东莞大凡提供
展开全部
解:(1)过点G作GH⊥AD,则四边形ABGH为矩形,
∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG,
∴EG=BG=10,∠FEG=∠B=90°;
∴EH=6,AE=4,∠AEF+∠HEG=90°,
∵∠AEF+∠AFE=90°
∴∠HEG=∠AFE,
又∵∠EHG=∠A=90°,
∴△EAF∽△GHE,
∴EF
EG
AE
GH
∴EF=5,
∴S△EFG=1\2EF•EG=×5×10=25.
(2)由图形的折叠可知四边形ABGF≌四边形HEGF,
∴BG=EG,AB=EH,∠BGF=∠EGF,
∵EF∥BG,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG,
∴BG=EF,
∴四边形BGEF为平行四边形,
又∵EF=EG,
∴平行四边形BGEF为菱形;
连接BE,
BE,FG互相垂直平分,
在Rt△EFH中,
EF=BG=10,EH=AB=8,
由勾股定理可得FH=AF=6,
∴AE=AF+EF=16,
∴BE=√AE2+AB2 =8√ 5
∴BO=4√ 5
,
∴OG=√BG2-BO2
=2√5
,
∵四边形BGEF是菱形,
∴FG=2OG=4 √5
,
答:折痕GF的长是4 √5
∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG,
∴EG=BG=10,∠FEG=∠B=90°;
∴EH=6,AE=4,∠AEF+∠HEG=90°,
∵∠AEF+∠AFE=90°
∴∠HEG=∠AFE,
又∵∠EHG=∠A=90°,
∴△EAF∽△GHE,
∴EF
EG
AE
GH
∴EF=5,
∴S△EFG=1\2EF•EG=×5×10=25.
(2)由图形的折叠可知四边形ABGF≌四边形HEGF,
∴BG=EG,AB=EH,∠BGF=∠EGF,
∵EF∥BG,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG,
∴BG=EF,
∴四边形BGEF为平行四边形,
又∵EF=EG,
∴平行四边形BGEF为菱形;
连接BE,
BE,FG互相垂直平分,
在Rt△EFH中,
EF=BG=10,EH=AB=8,
由勾股定理可得FH=AF=6,
∴AE=AF+EF=16,
∴BE=√AE2+AB2 =8√ 5
∴BO=4√ 5
,
∴OG=√BG2-BO2
=2√5
,
∵四边形BGEF是菱形,
∴FG=2OG=4 √5
,
答:折痕GF的长是4 √5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)S=25
(2)GF=4√5
(2)GF=4√5
更多追问追答
追问
可以写过程吗?
追答
(1) 因为折叠,所以三角形BGF≅△EGF BG=EG =10
作EH垂直BC于H,则EH=AB=8.
HG=根号(EG^2-EH^2)=6
AE=BH=BG-HG=4
设BF=EF=X
由AF^2+AE^2=EF^2建立方程:(8-X)^2+4^2=X^2
解得EF=X=5
S△EGF =EF*EG/2=25
(2)......慢慢来.....
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.解:作EH垂直BG于H,则EH=AB=8;又EG=BG=10.
∴HG=√(EG²-EH²)=6,AE=BH=BG-HG=10-6=4.
设BF=EF=X,则AF=8-X.
∵AF²+AE²=EF²,即(8-X)²+4²=X².
∴X=5.故S⊿EFG=EG*EF/2=10*5/2=25.
2.解:作GH垂直EF于H,则GH=AB=8;又EG=BG=10.
∴EH=√(EG²-GH²)=6;
∵∠EFG=∠BGF=∠EGF.
∴EF=EG=10,则FH=EF-EH=10-6=4.
故FG=√(FH²+GH²)=√(16+64)=4√5
∴HG=√(EG²-EH²)=6,AE=BH=BG-HG=10-6=4.
设BF=EF=X,则AF=8-X.
∵AF²+AE²=EF²,即(8-X)²+4²=X².
∴X=5.故S⊿EFG=EG*EF/2=10*5/2=25.
2.解:作GH垂直EF于H,则GH=AB=8;又EG=BG=10.
∴EH=√(EG²-GH²)=6;
∵∠EFG=∠BGF=∠EGF.
∴EF=EG=10,则FH=EF-EH=10-6=4.
故FG=√(FH²+GH²)=√(16+64)=4√5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
其
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询