已知;如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E上,BG=10

(1)当折痕的另一端F在AB边上时,求⊿EFG的面积。(2)当折痕的另一端F在AD边上时,求折痕GF的长。... (1)当折痕的另一端F在AB边上时,求⊿EFG的面积。
(2)当折痕的另一端F在AD边上时,求折痕GF的长。
展开
幸福de微笑huu
2012-05-29
知道答主
回答量:1
采纳率:0%
帮助的人:1606
展开全部
解:(1)过点G作GH⊥AD,则四边形ABGH为矩形,
∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG,
∴EG=BG=10,∠FEG=∠B=90°;
∴EH=6,AE=4,∠AEF+∠HEG=90°,
∵∠AEF+∠AFE=90°,
∴∠HEG=∠AFE,
又∵∠EHG=∠A=90°,
∴△EAF∽△GHE,
∴EF EG =AE GH ,
∴EF=5,
∴S△EFG=1 2 EF•EG=1 2 ×5×10=25.
(2)由图形的折叠可知四边形ABGF≌四边形HEGF,
∴BG=EG,AB=EH,∠BGF=∠EGF,
∵EF∥BG,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG,
∴BG=EF,
∴四边形BGEF为平行四边形,
又∵EF=EG,
∴平行四边形BGEF为菱形;
连接BE,
BE,FG互相垂直平分,
在Rt△EFH中,
EF=BG=10,EH=AB=8,
由勾股定理可得FH=AF=6,
∴AE=AF+EF=16,
∴BE= AE2+AB2 =8 5 ,
∴BO=4 5 ,
∴OG= BG2-BO2 =2 5 ,
∵四边形BGEF是菱形,
∴FG=2OG=4 5 ,
答:折痕GF的长是4 5 .
TableDI
2024-07-18 广告
在Excel中,进行文本相似度匹配通常涉及多种方法。常用的函数包括VLOOKUP和MATCH,但直接计算文本相似度的函数并不直接内置于Excel中。然而,你可以结合Excel的内置函数和逻辑来近似计算文本相似度,如使用LEN函数计算字符串长... 点击进入详情页
本回答由TableDI提供
孟爱孟
2012-12-01 · TA获得超过107个赞
知道答主
回答量:45
采纳率:0%
帮助的人:14.4万
展开全部
解:(1)过点G作GH⊥AD,则四边形ABGH为矩形,
∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG,
∴EG=BG=10,∠FEG=∠B=90°;
∴EH=6,AE=4,∠AEF+∠HEG=90°,
∵∠AEF+∠AFE=90°
∴∠HEG=∠AFE,
又∵∠EHG=∠A=90°,
∴△EAF∽△GHE,
∴EF
EG
AE
GH
∴EF=5,
∴S△EFG=1\2EF•EG=×5×10=25.

(2)由图形的折叠可知四边形ABGF≌四边形HEGF,
∴BG=EG,AB=EH,∠BGF=∠EGF,
∵EF∥BG,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG,
∴BG=EF,
∴四边形BGEF为平行四边形,
又∵EF=EG,
∴平行四边形BGEF为菱形;
连接BE,
BE,FG互相垂直平分,
在Rt△EFH中,
EF=BG=10,EH=AB=8,
由勾股定理可得FH=AF=6,
∴AE=AF+EF=16,
∴BE=√AE2+AB2 =8√ 5

∴BO=4√ 5

∴OG=√BG2-BO2
=2√5

∵四边形BGEF是菱形,
∴FG=2OG=4 √5

答:折痕GF的长是4 √5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
WentWithS
2011-08-16 · TA获得超过538个赞
知道小有建树答主
回答量:80
采纳率:100%
帮助的人:59万
展开全部
(1)S=25
(2)GF=4√5
更多追问追答
追问
可以写过程吗?
追答
(1)  因为折叠,所以三角形BGF≅△EGF BG=EG  =10
作EH垂直BC于H,则EH=AB=8.
HG=根号(EG^2-EH^2)=6
AE=BH=BG-HG=4
设BF=EF=X
由AF^2+AE^2=EF^2建立方程:(8-X)^2+4^2=X^2
解得EF=X=5
S△EGF =EF*EG/2=25
(2)......慢慢来.....
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
来自菩萨山迷人的考拉
2012-11-26
知道答主
回答量:40
采纳率:0%
帮助的人:12.8万
展开全部
1.解:作EH垂直BG于H,则EH=AB=8;又EG=BG=10.
∴HG=√(EG²-EH²)=6,AE=BH=BG-HG=10-6=4.
设BF=EF=X,则AF=8-X.
∵AF²+AE²=EF²,即(8-X)²+4²=X².
∴X=5.故S⊿EFG=EG*EF/2=10*5/2=25.
2.解:作GH垂直EF于H,则GH=AB=8;又EG=BG=10.
∴EH=√(EG²-GH²)=6;
∵∠EFG=∠BGF=∠EGF.
∴EF=EG=10,则FH=EF-EH=10-6=4.
故FG=√(FH²+GH²)=√(16+64)=4√5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
廖无墨9W
2012-11-03 · TA获得超过244个赞
知道答主
回答量:105
采纳率:0%
帮助的人:21.2万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式