函数y=x2+2x+2/x+1的值域是
1个回答
展开全部
y=(x^2+2x+2)/(x+1)
=((x+1)^2+1)/(x+1)
=(x+1)+1/(x+1)
x+1>0时,(x+1)+1/(x+1)≥2√[(x+1)*1/(x+1)]=2,
x+1<0时,-(x+1) >0,
-(x+1)-1/(x+1)≥2√[-(x+1)*-1/(x+1)]=2,
所以(x+1)+1/(x+1)≤-2.
函数值域是(-∞,-2]∪[2,+∞).
=((x+1)^2+1)/(x+1)
=(x+1)+1/(x+1)
x+1>0时,(x+1)+1/(x+1)≥2√[(x+1)*1/(x+1)]=2,
x+1<0时,-(x+1) >0,
-(x+1)-1/(x+1)≥2√[-(x+1)*-1/(x+1)]=2,
所以(x+1)+1/(x+1)≤-2.
函数值域是(-∞,-2]∪[2,+∞).
追问
x+1>0时,(x+1)+1/(x+1)≥2√[(x+1)*1/(x+1)]=2,
为什么大于等于号后面有根号
追答
这里利用的是基本不等式:a+b≥2√(ab),后面当然有根号。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询