在双曲线x²/9-y²/4=1中被点P(2,1)平分的弦所在直线方程
2个回答
展开全部
设在双曲线x²/9-y²/4=1上的两个点坐标为(x1,y1),(x2,y2),
代入双曲线x²/9-y²/4=1得到两个方程
x1²/9-y1²/4=1
x2²/9-y2²/4=1
将这两个方程作差得到
(x1+x2)(x1-x2)/9-(y1+y2)(y1-y2)/4=0
P(2,1)为中点
x1+x2=4,y1+y2=2代入上面式子
得到4(x1-x2)/9-(y1-y2)/2=0
(y1-y2)/(x1-x2)=2/9=k
即所求直线的斜率,再利用直线的点斜式得到直线方程
y-1=2(x-2)/9
2x-9y+5=0
总结:在已知弦中点的前提下,在圆锥曲线中都可以用点差法求直线斜率,
你可以自己用椭圆或抛物线试试,这是一类型,希望你能注意总结方法
代入双曲线x²/9-y²/4=1得到两个方程
x1²/9-y1²/4=1
x2²/9-y2²/4=1
将这两个方程作差得到
(x1+x2)(x1-x2)/9-(y1+y2)(y1-y2)/4=0
P(2,1)为中点
x1+x2=4,y1+y2=2代入上面式子
得到4(x1-x2)/9-(y1-y2)/2=0
(y1-y2)/(x1-x2)=2/9=k
即所求直线的斜率,再利用直线的点斜式得到直线方程
y-1=2(x-2)/9
2x-9y+5=0
总结:在已知弦中点的前提下,在圆锥曲线中都可以用点差法求直线斜率,
你可以自己用椭圆或抛物线试试,这是一类型,希望你能注意总结方法
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询