如何求收敛半径
一般的推导
用第n+1项除以第n项,整个的绝对值,小于1,解出x(或x-a这决定于你级数的展开)的绝对值小于的值就是收敛半径收敛域就是求使其收敛的所有的点构成的区域
比如收敛半径是r,求收敛域,就是判断x(或x-a)的对值r时必发散,所以只要判断=r时的两个点是否收敛即可,如过有收敛就把该点并到<r的区域上即得收敛域
拓展资料
收敛半径r是一个非负的实数或无穷大(),使得在 | z -a| < r时幂级数收敛,在 | z -a| > r时幂级数发散。
定义幂级数 f 为:。其中常数 a 是收敛圆盘的中心,cn 为第 n 个复系数,z 为变量。
收敛半径 r 是一个非负的实数或无穷大(),使得在 | z a | < r 时幂级数收敛,在 | z a | > r 时幂级数发散。
具体来说,当 z 和 a 足够接近时,幂级数就会收敛,反之则可能发散。收敛半径就是收敛区域和发散区域的分界线。在 |z - a| = r 的收敛圆上,幂级数的敛散性是不确定的:对某些 z 可能收敛,对其它的则发散。如果幂级数对所有复数 z 都收敛,那么说收敛半径是无穷大。
根据达朗贝尔审敛法,收敛半径R满足:如果幂级数满足,则:
ρ是正实数时,。
ρ = 0时,。
时,R = 0。
或者。
根据根值审敛法,则有柯西-阿达马公式:
将一个收敛半径是正数的幂级数的变量取为复数,就可以定义一个全纯函数。收敛半径可以被如下定理刻画:
一个中心为 a 的幂级数 f 的收敛半径 R 等于 a 与离 a 最近的使得函数不能用幂级数方式定义的点的距离。
到 a 的距离严格小于 R 的所有点组成的集合称为收敛圆盘。
最近点的取法是在整个复平面中,而不仅仅是在实轴上,即使中心和系数都是实数时也是如此。例如:函数
没有复根。它在零处的泰勒展开为:
运用达朗贝尔审敛法可以得到它的收敛半径为1。与此相应的,函数 f(z) 在 ±i 存在奇点,其与原点0的距离是1。
广告 您可能关注的内容 |