配方法因式分解:2x²-4x-9
2x²-4x-9=2x²-4x+2-11=2(x-1)²-11=2[(x-1)²-22]=2(x-1+√22)(x-1-√22)怎...
2x²-4x-9
=2x²-4x+2-11
=2(x-1)²-11
=2[(x-1)²-22]
=2(x-1+√22)(x-1-√22)
怎么变成=2(x-1)²-11
=2[(x-1)²-22]
那个22怎么回事啊? 展开
=2x²-4x+2-11
=2(x-1)²-11
=2[(x-1)²-22]
=2(x-1+√22)(x-1-√22)
怎么变成=2(x-1)²-11
=2[(x-1)²-22]
那个22怎么回事啊? 展开
3个回答
展开全部
我也发现了,写错了,呵呵。再解一遍吧,不好意思啊。
2x²-4x-9
=2x²-4x+2-11
=2(x-1)²-11
=2[(x-1)²-11/2]
=2(x-1+√22/2)(x-1-√22/2)
不应该是√22,应该是(√22)/2
2x²-4x-9
=2x²-4x+2-11
=2(x-1)²-11
=2[(x-1)²-11/2]
=2(x-1+√22/2)(x-1-√22/2)
不应该是√22,应该是(√22)/2
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2x²-4x-9
=2(x^2-2x+1)-9-2
=2(x-1)^2-11
=2[(x-1)^2-5.5]
=2(x-1+√5.5)(x-1-√5.5)平方差公式
=2(x^2-2x+1)-9-2
=2(x-1)^2-11
=2[(x-1)^2-5.5]
=2(x-1+√5.5)(x-1-√5.5)平方差公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
错了。
应该是:
2x²-4x-9
=2x²-4x+2-11
=2(x-1)²-11
=2[(x-1)²-(11/2)]
=2{(x-1)²-[(√22)/2]²}
=2[x-1+(√22)/2][(x-1-(√22)/2]
应该是:
2x²-4x-9
=2x²-4x+2-11
=2(x-1)²-11
=2[(x-1)²-(11/2)]
=2{(x-1)²-[(√22)/2]²}
=2[x-1+(√22)/2][(x-1-(√22)/2]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询