已知BD,CE使△ABC的高,F,G分别为DE,BC的中点。求证:FG⊥DE

百度网友ce899b4
2011-08-16 · TA获得超过1.5万个赞
知道大有可为答主
回答量:1800
采纳率:88%
帮助的人:1095万
展开全部
连GE、GD,
三角形CBD和BCE全等(角角边),
CD=BE,
三角形BEG和CDG全等(边角边),
EG=GD,
三角形GED等腰,F是底边ED的中点,
FG⊥DE
BD和CE是两个腰上的高,△BCE和△BCD是RT△,连结EG和DG,G是二直角三角形斜边BC的中点,EG=BC/2,DG=BC/2,EG=DG,三角形EDG是等腰三角形,而F是ED的中点,FG是其对称轴,三线合一,故FG⊥DE
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式