请教一道求极限的题: lim[x->0](xcosx-sinx)/x^3 答案是使用洛必达法则得到-1/3 ,以下是我的做法:

分子分母同除x得到lim[x->0](cosx-sinx/x)/x^2,又因为lim[x->0]sinx/x=1,所以得到lim[x->0]cosx-1/x^2,用-x^... 分子分母同除x得到lim[x->0](cosx-sinx/x)/x^2,又因为lim[x->0]sinx/x=1,所以得到
lim[x->0]cosx-1/x^2,用-x^2/2等价无穷小替换cosx-1,最后得到-1/2.
想不明白到底错哪,困扰好久了,请教各位帮忙解惑,谢谢!
展开
心中愛
2011-08-17 · TA获得超过329个赞
知道答主
回答量:217
采纳率:0%
帮助的人:146万
展开全部
他的说法有错。你没有考虑到分母还存在,并且分母里还有x,所以你算错了,不懂请追问。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式