展开全部
1.在直角三角形中,∠A=90°,BC=1cm,AC=0.8cm,则AB=( A )
A.0.6 B.0.4 C.1.4 D.2.4
2.直角三角形的周长为12cm,斜边长为5cm,则其面积为(D )
A.12 B.10 C.8 D.6
3.在△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是(D )
A.42 B.32. C.42或32 D.37或33
1.等边三角形的高是h,则它的面积是( )
A. h2 B. h2 C. h2 D. h2
答案:B
说明:如图,ΔABC为等边三角形,AD⊥BC,且AD=h,因为∠B=60º,AD⊥BC,所以∠BAD=30º;设BD=x,则AB=2x,且有x2+h2=(2x)2,解之得x= h,因为BC=2BD= h,所以SΔABC= BC•AD= • h•h= h2,所以答案为B.
2.直角三角形的周长为12cm,斜边长为5cm,其面积为( )
A. 12cm2 B. 10cm 2 C. 8cm2 D. 6cm2
答案:D
说明:设直角三角形的两条直角边长分别为xcm、ycm,依题意得:
由①得x+y=7③,由③得(x+y)2=72,即x2+y2+2xy=49,因为x2+y2=25,所以25+2xy=49,即xy=12,这样就有S= xy = ×12=6,所以答案为D.
3.下列命题是真命题的个数有( )
①直角三角形的最大边长为 ,短边长为1,则另一条边长为
②已知直角三角形的面积为2,两直角边的比为1:2,则它的斜边长为
③在直角三角形中,若两条直角边长为n2−1和2n,则斜边长为n2+1
④等腰三角形面积为12,底边上的高为4,则腰长为5
A.1个 B.2个 C.3个 D.4个
答案:D
说明:①因为另一条直角边长的平方为( )2−12=3−1=2,所以另一条边长为 是正确的;②设两直角边为k和2k,而由已知 •k•2k=2,所以k= ,故两直角边长为 ,2 ,所以斜边长为 = ,故②正确;③因为(n2−1)2+(2n)2=n4−2n2+1+4n2=n4+2n2+1=(n2+1)2,故③正确;④由面积、底边上的高可得底边为6,故底边的一半为3,所以斜边长为 =5,故④正确;所以答案为D.
4.直角三角形的面积为S,斜边上的中线长为m,则这个三角形的周长是( )
A. + 2m B. +m C.2( +m) D.2 +m
答案:C
说明:如图,设AC=x,BC=y,则 xy=S;因为CD为中线,且CD=m,所以AB=2CD=2m,所以x2+y2=( 2m)2=4m2,(x+y)2=x2+2xy+y2=(x2+y2)+2xy=4m2+4S,即x+y= ,所以ΔABC的周长为:AC+BC+AB=x+y+2m = +2m=2( +m),答案为C.
5.如图,已知边长为5的等边ΔABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是( )
A.10 −15 B.10−5 C.5 −5 D.20−10
答案:D
说明:设DC=x,因为∠C=60º,ED⊥BC,所以EC=2x
因为ΔAEF≌ΔDEF,所以AE=DE=5−2x
由勾股定理得:x2+(5−2x)2=(2x)2,即x2−20x+25=0,解得x= =10±5
因为DC<BC=5,所以x=10+5 应舍去,故x=10−5 ,所以CE=2x=2(10−5 )=20−10 ,答案为D.
6.如果直角三角形的三条边长分别为2、4、a,那么a的取值可以有( )
A.0个 B.1个 C.2个 D.3个
答案:C
说明:①若a为斜边长,则由勾股定理有22+42=a2,可得a=2 ;②若a为直角边长,则由勾股定理有22+a2=42,可得a=2 ,所以a的取值可以有2个,答案为C.
7.小明搬来一架2.5米长的木梯,准备把拉花挂在2.4米高的墙上,则梯脚与墙脚的距离为( )米
A.0.7 B. 0.8 C.0.9 D.1.0
答案:A
说明:因为墙与地面的夹角可看作是直角,所以利用勾股定理,可得出梯脚与墙脚的距离为 = = =0.7,答案为A.
8.一个直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为( )
A.6 B. 8 C.10 D.12
答案:C
说明:设直角边长为x,则斜边为x+2,由勾股定理得x2+62=(x+2)2,解之得x=8,所以斜边长为8+2=10,答案为C.
9.如图,在ΔABC中,若AB>AC,AE为BC上的中线,AF为BC边上的高,求证:AB2−AC2=2BC·EF
证明:因为AF⊥BC,所以在RtΔAFB中,由勾股定理得:AB2=AF2+BF2
在RtΔAFC中,由勾股定理得:AC2=AF2+FC2
所以AB2−AC2=BF2−FC2=(BF+FC)(BF−FC)=BC•(BF−FC)
因为BF=BE+EF,FC=EC−EF,BE=EC
所以BF−FC=2EF
所以AB2−AC2=BC•2EF=2BC•EF
10.如图,ΔABC中,∠A=90º,E是AC的中点,EF⊥BC,F为垂足,BC=9,FC=3,求 AB.
解:如图,作AD⊥BC
因为EF⊥BC,所以AD//EF
因为E为AC中点,所以F为DC的中点
因为FC=3,所以DF=3,DC=3+3=6
因为BC=9,所以BD=9−6=3
设EC=x,则AC=2x
由勾股定理得:AC2=AD2+DC2,AB2=AD2+BD2
所以AC2−AB2=DC2−BD2①
即AC2−AB2=62−32=27
因为∠A=90º,由勾股定理得AB2+AC2=BC2=81②
由②−①得2AB2=81−27=54,所以AB2=27,即AB= =3
习题精选二
1.判断题
⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角.
⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半.”的逆命题是真命题.
⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形.
⑷△ABC的三边之比是1:1: ,则△ABC是直角三角形.
答案:对,错,错,对;
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )
A.如果∠C-∠B=∠A,则△ABC是直角三角形.
B.如果c2=b2—a2,则△ABC是直角三角形,且∠C=90°.
C.如果(c+a)(c-a)=b2,则△ABC是直角三角形.
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形.
答案:D
3.下列四条线段不能组成直角三角形的是( )
A.a=8,b=15,c=17 B.a=9,b=12,c=15 C.a= ,b= ,c= D.a:b:c=2:3:4
答案:D
4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a= ,b= ,c= ; ⑵a=5,b=7,c=9;
⑶a=2,b= ,c= ; ⑷a=5,b= ,c=1.
答案:⑴是,∠B;⑵不是;⑶是,∠C;⑷是,∠A.
5.叙述下列命题的逆命题,并判断逆命题是否正确.
⑴如果a3>0,那么a2>0;
⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;
⑶如果两个三角形全等,那么它们的对应角相等;
⑷关于某条直线对称的两条线段一定相等.
答案:⑴如果a2>0,那么a3>0;假命题.
⑵如果三角形是锐角三角形,那么有一个角是锐角;真命题.
⑶如果两个三角形的对应角相等,那么这两个三角形全等;假命题.
⑷两条相等的线段一定关于某条直线对称;假命题.
6.填空题.
⑴任何一个命题都有 ,但任何一个定理未必都有 .
⑵“两直线平行,内错角相等.”的逆定理是 .
⑶在△ABC中,若a2=b2-c2,则△ABC是 三角形, 是直角;若a2<b2-c2,则∠B是 .
⑷若在△ABC中,a=m2-n2,b=2mn,c=m2+n2,则△ABC是 三角形.
答案:⑴逆命题,逆定理;⑵内错角相等,两直线平行;⑶直角,∠B,钝角;⑷直角.
⑸小强在操场上向东走80m后,又走了60m,再走100m回到原地.小强在操场上向东走了80m后,又走60m的方向是 .
答案:向正南或正北.
7.若三角形的三边是 ⑴1、、2; ⑵ ; ⑶32,42,52 ⑷9,40,41; ⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有( )
A.2个 B.3个 C.4个 D.5个
答案:B
8.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是( )
A.等腰三角形; B.直角三角形; C.等腰三角形或直角三角形; D.等腰直角三角形.
答案:C
9.如图,在操场上竖直立着一根长为 2米的测影竿,早晨测得它的影长为 4米,中午测得它的影长为 1米,则A、B、C三点能否构成直角三角形?为什么?
答案:能,因为BC2=BD2+CD2=20,AC2=AD2+CD2=5,AB2=25,所以BC2+AC2=AB2
10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
答案:由△ABC是直角三角形,可知∠CAB+∠CBA=90°,所以有∠CAB=40°,航向为北偏东50°.
11.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量.小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米, DA=12米,又已知∠B=90°.
提示:连结AC.AC2=AB2+BC2=25,AC2+AD2=CD2,因此∠CAB=90°,
S四边形=S△ADC+S△ABC=36平方米.
12.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,且CD2=AD·BD.求证:△ABC中是直角三角形.
提示:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2,∴∠ACB=90°.
13.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm.求证:△ABC是等腰三角形.
提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC.
14.已知:如图,∠1=∠2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2.求证:AB2=AE2+CE2.
提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2.
15.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c= ,试判定△ABC的形状.
提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14.又因为c2=14,所以a2+b2=c2 .
给出下列几组数:① ;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m>n>0).其中—定能组成直角三角形三边长的是( ).
A.①②
B.③④
C.①③④
D.④
8.下列各组数能构成直角三角形三边长的是( ).
A.1,2,3
B.4,5,6
C.12,13,14
D.9,40,41
9.等边三角形的三条高把这个三角形分成直角三角形的个数是( ).
A.8个
B.10个
C.11个
D.12个
10.如果一个三角形一边的平方为2(m2+1),其余两边分别为m-1,m + l,那么这个三角形是( );
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
三、解答题
11.如图18-2-5,在 中,D为BC上的一点,若AC=l7,AD=8,CD=15,AB=10,求 的周长和面积.
12.已知 中,AB=17 cm,BC=30 cm,BC上的中线AD=8 cm,请你判断 的形状,并说明理由 .
13.一种机器零件的形状如图18-2-6,规定这个零件中的 A和 DBC都应为直角,工人师傅量得这个零件各边的尺寸如图(单位:mm),这个零件符合要求吗?
14.如图18-2-7,四边形ABCD中, ,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.
15.为了庆祝红宝石婚纪念日,詹克和凯丽千家举行聚会.詹克忽然发现他的年龄的平方与凯丽年龄的平方的差,正好等于他的子女数目的平方,已知詹克比凯丽大一岁,现在他们都不到70岁.请问,当年结婚时,两个人各是多少岁?现在共有子女几人?(在西方,结婚40周年被称为红宝石婚,且该国的合法结婚年龄为16岁)
16.有一只喜鹊正在一棵高3 m的小树的树梢上觅食,它的巢筑在距离该树24 m且高为14 m的一棵大树上,巢距离大树顶部1m,这时,它听到巢中幼鸟求助的叫声,便立即赶过去.如果它飞行的速度为5m/s,那么它至少需要几秒才能赶回巢中?。
四、思维拓展
17.给出一组式子:32+42=52,52+122=132,72+242=252,92+402=412,…
(1)你能发现关于上述式子的一些规律吗?
(2)请你运用规律,或者通过试验的方法(利用计算器),给出第五个式子.
18.我们知道,以3,4,5为边长的三角形为直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(8,6,10),(15,8,17),(24,10,26)等.
(1)请你根据上述四组勾股数的规律,写出第六组勾股数;
(2)试用数学等式描述上述勾股数组的规律;
(3)请证明你所发现的规律.
五、中考热身
19.(2004年福州市)如图18-2-8,校园内有两棵树,相距12m,一棵树高13m,另一棵树高8m.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞______m.
答案
1.13;直角三角形 2. 3.直角;6 4.8.4 5.直角三角形;勾股定理的逆定理 6.184 cm2
7.D 8.D 9.D 10.B
11.周长为48,面积为84. 提示:根据勾股定理的逆定理可知 为直角三角形,故AD BC,再根据勾股定理可得BD=6,从而可求解.
12. 为等腰三角形.
理由:在 中,AB=17cm,AD=8 cm,BD=15 cm,
AB2=AD2+BD2
为直角三角形.
在 中,AC2=AD2+CD2=82+152=172cm2
AC=17 cm,
为等腰三角形.
13.符合.
14.连接AC,得 ,由勾股定理知AC=5,
AC2+CD2=52+122=169=132=AD2, ACD=
S四边形ABCD=S ABC+S ACD=
= 6+30=36.
15.詹克21岁,凯丽20岁,现在共有11个子女.
16.如图,由题意知AB=3 m,CD=14-l=13 m,BD=24 m.过A作AE CD于E,则CE=13-3=10 m,AE=BD=24 m.在 中,AC2=CE2+AF=102+242=262 m2, AC=26 m, 26÷5=5.2 s, 它至少需要5.2 s才能赶回巢中.
17.(1)①每个等式中的三个底数都正好组成一组勾股数;
②每个等式中的最小的底数恰好是连续的奇数;
③最大的底数比第二大的底数大1;
④第二大的底数是偶数,最大的底数是奇数;
⑤这些等式中的底数都是代数式m2-n2,2mn,m2+n2,当m和n取不同正整数时得到的数.
(2)第五个式子应当是m=6,n=5时,所得的三个底数的平方和,即112+602=612.
18.(1)(48,14,50).
(2)设n≥2,且n为整数,勾股数组的规律为 (n2-l,n2,n2+1).
(3) (n2-1)2+(2n)2=n4-2n2+1+4n2=(n2+1)2,
以n2-1,2n,n2+l为三边长的三角形为直角三角形.
A.0.6 B.0.4 C.1.4 D.2.4
2.直角三角形的周长为12cm,斜边长为5cm,则其面积为(D )
A.12 B.10 C.8 D.6
3.在△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是(D )
A.42 B.32. C.42或32 D.37或33
1.等边三角形的高是h,则它的面积是( )
A. h2 B. h2 C. h2 D. h2
答案:B
说明:如图,ΔABC为等边三角形,AD⊥BC,且AD=h,因为∠B=60º,AD⊥BC,所以∠BAD=30º;设BD=x,则AB=2x,且有x2+h2=(2x)2,解之得x= h,因为BC=2BD= h,所以SΔABC= BC•AD= • h•h= h2,所以答案为B.
2.直角三角形的周长为12cm,斜边长为5cm,其面积为( )
A. 12cm2 B. 10cm 2 C. 8cm2 D. 6cm2
答案:D
说明:设直角三角形的两条直角边长分别为xcm、ycm,依题意得:
由①得x+y=7③,由③得(x+y)2=72,即x2+y2+2xy=49,因为x2+y2=25,所以25+2xy=49,即xy=12,这样就有S= xy = ×12=6,所以答案为D.
3.下列命题是真命题的个数有( )
①直角三角形的最大边长为 ,短边长为1,则另一条边长为
②已知直角三角形的面积为2,两直角边的比为1:2,则它的斜边长为
③在直角三角形中,若两条直角边长为n2−1和2n,则斜边长为n2+1
④等腰三角形面积为12,底边上的高为4,则腰长为5
A.1个 B.2个 C.3个 D.4个
答案:D
说明:①因为另一条直角边长的平方为( )2−12=3−1=2,所以另一条边长为 是正确的;②设两直角边为k和2k,而由已知 •k•2k=2,所以k= ,故两直角边长为 ,2 ,所以斜边长为 = ,故②正确;③因为(n2−1)2+(2n)2=n4−2n2+1+4n2=n4+2n2+1=(n2+1)2,故③正确;④由面积、底边上的高可得底边为6,故底边的一半为3,所以斜边长为 =5,故④正确;所以答案为D.
4.直角三角形的面积为S,斜边上的中线长为m,则这个三角形的周长是( )
A. + 2m B. +m C.2( +m) D.2 +m
答案:C
说明:如图,设AC=x,BC=y,则 xy=S;因为CD为中线,且CD=m,所以AB=2CD=2m,所以x2+y2=( 2m)2=4m2,(x+y)2=x2+2xy+y2=(x2+y2)+2xy=4m2+4S,即x+y= ,所以ΔABC的周长为:AC+BC+AB=x+y+2m = +2m=2( +m),答案为C.
5.如图,已知边长为5的等边ΔABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是( )
A.10 −15 B.10−5 C.5 −5 D.20−10
答案:D
说明:设DC=x,因为∠C=60º,ED⊥BC,所以EC=2x
因为ΔAEF≌ΔDEF,所以AE=DE=5−2x
由勾股定理得:x2+(5−2x)2=(2x)2,即x2−20x+25=0,解得x= =10±5
因为DC<BC=5,所以x=10+5 应舍去,故x=10−5 ,所以CE=2x=2(10−5 )=20−10 ,答案为D.
6.如果直角三角形的三条边长分别为2、4、a,那么a的取值可以有( )
A.0个 B.1个 C.2个 D.3个
答案:C
说明:①若a为斜边长,则由勾股定理有22+42=a2,可得a=2 ;②若a为直角边长,则由勾股定理有22+a2=42,可得a=2 ,所以a的取值可以有2个,答案为C.
7.小明搬来一架2.5米长的木梯,准备把拉花挂在2.4米高的墙上,则梯脚与墙脚的距离为( )米
A.0.7 B. 0.8 C.0.9 D.1.0
答案:A
说明:因为墙与地面的夹角可看作是直角,所以利用勾股定理,可得出梯脚与墙脚的距离为 = = =0.7,答案为A.
8.一个直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为( )
A.6 B. 8 C.10 D.12
答案:C
说明:设直角边长为x,则斜边为x+2,由勾股定理得x2+62=(x+2)2,解之得x=8,所以斜边长为8+2=10,答案为C.
9.如图,在ΔABC中,若AB>AC,AE为BC上的中线,AF为BC边上的高,求证:AB2−AC2=2BC·EF
证明:因为AF⊥BC,所以在RtΔAFB中,由勾股定理得:AB2=AF2+BF2
在RtΔAFC中,由勾股定理得:AC2=AF2+FC2
所以AB2−AC2=BF2−FC2=(BF+FC)(BF−FC)=BC•(BF−FC)
因为BF=BE+EF,FC=EC−EF,BE=EC
所以BF−FC=2EF
所以AB2−AC2=BC•2EF=2BC•EF
10.如图,ΔABC中,∠A=90º,E是AC的中点,EF⊥BC,F为垂足,BC=9,FC=3,求 AB.
解:如图,作AD⊥BC
因为EF⊥BC,所以AD//EF
因为E为AC中点,所以F为DC的中点
因为FC=3,所以DF=3,DC=3+3=6
因为BC=9,所以BD=9−6=3
设EC=x,则AC=2x
由勾股定理得:AC2=AD2+DC2,AB2=AD2+BD2
所以AC2−AB2=DC2−BD2①
即AC2−AB2=62−32=27
因为∠A=90º,由勾股定理得AB2+AC2=BC2=81②
由②−①得2AB2=81−27=54,所以AB2=27,即AB= =3
习题精选二
1.判断题
⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角.
⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半.”的逆命题是真命题.
⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形.
⑷△ABC的三边之比是1:1: ,则△ABC是直角三角形.
答案:对,错,错,对;
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )
A.如果∠C-∠B=∠A,则△ABC是直角三角形.
B.如果c2=b2—a2,则△ABC是直角三角形,且∠C=90°.
C.如果(c+a)(c-a)=b2,则△ABC是直角三角形.
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形.
答案:D
3.下列四条线段不能组成直角三角形的是( )
A.a=8,b=15,c=17 B.a=9,b=12,c=15 C.a= ,b= ,c= D.a:b:c=2:3:4
答案:D
4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a= ,b= ,c= ; ⑵a=5,b=7,c=9;
⑶a=2,b= ,c= ; ⑷a=5,b= ,c=1.
答案:⑴是,∠B;⑵不是;⑶是,∠C;⑷是,∠A.
5.叙述下列命题的逆命题,并判断逆命题是否正确.
⑴如果a3>0,那么a2>0;
⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;
⑶如果两个三角形全等,那么它们的对应角相等;
⑷关于某条直线对称的两条线段一定相等.
答案:⑴如果a2>0,那么a3>0;假命题.
⑵如果三角形是锐角三角形,那么有一个角是锐角;真命题.
⑶如果两个三角形的对应角相等,那么这两个三角形全等;假命题.
⑷两条相等的线段一定关于某条直线对称;假命题.
6.填空题.
⑴任何一个命题都有 ,但任何一个定理未必都有 .
⑵“两直线平行,内错角相等.”的逆定理是 .
⑶在△ABC中,若a2=b2-c2,则△ABC是 三角形, 是直角;若a2<b2-c2,则∠B是 .
⑷若在△ABC中,a=m2-n2,b=2mn,c=m2+n2,则△ABC是 三角形.
答案:⑴逆命题,逆定理;⑵内错角相等,两直线平行;⑶直角,∠B,钝角;⑷直角.
⑸小强在操场上向东走80m后,又走了60m,再走100m回到原地.小强在操场上向东走了80m后,又走60m的方向是 .
答案:向正南或正北.
7.若三角形的三边是 ⑴1、、2; ⑵ ; ⑶32,42,52 ⑷9,40,41; ⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有( )
A.2个 B.3个 C.4个 D.5个
答案:B
8.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是( )
A.等腰三角形; B.直角三角形; C.等腰三角形或直角三角形; D.等腰直角三角形.
答案:C
9.如图,在操场上竖直立着一根长为 2米的测影竿,早晨测得它的影长为 4米,中午测得它的影长为 1米,则A、B、C三点能否构成直角三角形?为什么?
答案:能,因为BC2=BD2+CD2=20,AC2=AD2+CD2=5,AB2=25,所以BC2+AC2=AB2
10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
答案:由△ABC是直角三角形,可知∠CAB+∠CBA=90°,所以有∠CAB=40°,航向为北偏东50°.
11.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量.小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米, DA=12米,又已知∠B=90°.
提示:连结AC.AC2=AB2+BC2=25,AC2+AD2=CD2,因此∠CAB=90°,
S四边形=S△ADC+S△ABC=36平方米.
12.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,且CD2=AD·BD.求证:△ABC中是直角三角形.
提示:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2,∴∠ACB=90°.
13.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm.求证:△ABC是等腰三角形.
提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC.
14.已知:如图,∠1=∠2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2.求证:AB2=AE2+CE2.
提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2.
15.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c= ,试判定△ABC的形状.
提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14.又因为c2=14,所以a2+b2=c2 .
给出下列几组数:① ;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m>n>0).其中—定能组成直角三角形三边长的是( ).
A.①②
B.③④
C.①③④
D.④
8.下列各组数能构成直角三角形三边长的是( ).
A.1,2,3
B.4,5,6
C.12,13,14
D.9,40,41
9.等边三角形的三条高把这个三角形分成直角三角形的个数是( ).
A.8个
B.10个
C.11个
D.12个
10.如果一个三角形一边的平方为2(m2+1),其余两边分别为m-1,m + l,那么这个三角形是( );
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
三、解答题
11.如图18-2-5,在 中,D为BC上的一点,若AC=l7,AD=8,CD=15,AB=10,求 的周长和面积.
12.已知 中,AB=17 cm,BC=30 cm,BC上的中线AD=8 cm,请你判断 的形状,并说明理由 .
13.一种机器零件的形状如图18-2-6,规定这个零件中的 A和 DBC都应为直角,工人师傅量得这个零件各边的尺寸如图(单位:mm),这个零件符合要求吗?
14.如图18-2-7,四边形ABCD中, ,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.
15.为了庆祝红宝石婚纪念日,詹克和凯丽千家举行聚会.詹克忽然发现他的年龄的平方与凯丽年龄的平方的差,正好等于他的子女数目的平方,已知詹克比凯丽大一岁,现在他们都不到70岁.请问,当年结婚时,两个人各是多少岁?现在共有子女几人?(在西方,结婚40周年被称为红宝石婚,且该国的合法结婚年龄为16岁)
16.有一只喜鹊正在一棵高3 m的小树的树梢上觅食,它的巢筑在距离该树24 m且高为14 m的一棵大树上,巢距离大树顶部1m,这时,它听到巢中幼鸟求助的叫声,便立即赶过去.如果它飞行的速度为5m/s,那么它至少需要几秒才能赶回巢中?。
四、思维拓展
17.给出一组式子:32+42=52,52+122=132,72+242=252,92+402=412,…
(1)你能发现关于上述式子的一些规律吗?
(2)请你运用规律,或者通过试验的方法(利用计算器),给出第五个式子.
18.我们知道,以3,4,5为边长的三角形为直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(8,6,10),(15,8,17),(24,10,26)等.
(1)请你根据上述四组勾股数的规律,写出第六组勾股数;
(2)试用数学等式描述上述勾股数组的规律;
(3)请证明你所发现的规律.
五、中考热身
19.(2004年福州市)如图18-2-8,校园内有两棵树,相距12m,一棵树高13m,另一棵树高8m.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞______m.
答案
1.13;直角三角形 2. 3.直角;6 4.8.4 5.直角三角形;勾股定理的逆定理 6.184 cm2
7.D 8.D 9.D 10.B
11.周长为48,面积为84. 提示:根据勾股定理的逆定理可知 为直角三角形,故AD BC,再根据勾股定理可得BD=6,从而可求解.
12. 为等腰三角形.
理由:在 中,AB=17cm,AD=8 cm,BD=15 cm,
AB2=AD2+BD2
为直角三角形.
在 中,AC2=AD2+CD2=82+152=172cm2
AC=17 cm,
为等腰三角形.
13.符合.
14.连接AC,得 ,由勾股定理知AC=5,
AC2+CD2=52+122=169=132=AD2, ACD=
S四边形ABCD=S ABC+S ACD=
= 6+30=36.
15.詹克21岁,凯丽20岁,现在共有11个子女.
16.如图,由题意知AB=3 m,CD=14-l=13 m,BD=24 m.过A作AE CD于E,则CE=13-3=10 m,AE=BD=24 m.在 中,AC2=CE2+AF=102+242=262 m2, AC=26 m, 26÷5=5.2 s, 它至少需要5.2 s才能赶回巢中.
17.(1)①每个等式中的三个底数都正好组成一组勾股数;
②每个等式中的最小的底数恰好是连续的奇数;
③最大的底数比第二大的底数大1;
④第二大的底数是偶数,最大的底数是奇数;
⑤这些等式中的底数都是代数式m2-n2,2mn,m2+n2,当m和n取不同正整数时得到的数.
(2)第五个式子应当是m=6,n=5时,所得的三个底数的平方和,即112+602=612.
18.(1)(48,14,50).
(2)设n≥2,且n为整数,勾股数组的规律为 (n2-l,n2,n2+1).
(3) (n2-1)2+(2n)2=n4-2n2+1+4n2=(n2+1)2,
以n2-1,2n,n2+l为三边长的三角形为直角三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询