在三角形ABC中,已知Sin2A+Sin2B=Sin2C,可以得出三角形的形状吗?求过程
2个回答
展开全部
sin2A+sin2B=sin2(π-A-B)= - sin(2A+2B)
所以sin2A+sin2B+sin(2A+2B)=0
sin2A+sin2B+sin2Acos2B+cos2Asin2B=0
sin2A(1+cos2B)+sin2B(1+cos2A)=0
2sinAcosA•2cosBcosB+2sinBcosB•2cosAcosA=0
4cosAcosB(sinAcosB+cosAsinB)=0
4cosAcosBsin(A+B)=0
4cosAcosBsinC=0
所以cosA=0或cosB=0
所以是直角三角形
所以sin2A+sin2B+sin(2A+2B)=0
sin2A+sin2B+sin2Acos2B+cos2Asin2B=0
sin2A(1+cos2B)+sin2B(1+cos2A)=0
2sinAcosA•2cosBcosB+2sinBcosB•2cosAcosA=0
4cosAcosB(sinAcosB+cosAsinB)=0
4cosAcosBsin(A+B)=0
4cosAcosBsinC=0
所以cosA=0或cosB=0
所以是直角三角形
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询