曲线x^2+y^2+z^2-3x=0和2x-3y+5z-4=0在点(1,1,1)上的法平面方程。

chzhn
2011-08-19 · TA获得超过5342个赞
知道大有可为答主
回答量:2951
采纳率:0%
帮助的人:1431万
展开全部
设F1 = x²+y²+z²-3x
F2 = 2x-3y+5z-4
根据隐函数曲面的切向量的方程可得
(2x-3) + 2y*y'+2z*z'=0
2-3y'+5z'=0
将x=y=z=1代入可以求得y'=-7/16,z'=-1/16
所以可以设切向量为(-16,7,1)
所以法平面方程为-16(x-1) + 7(y-1) + (z-1)=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式