数列1*1+2*2+3*3+...n*n求和公式是n(n+1)(2n+1)/6 怎么证明的
老师讲过忘了好像要升次什么的那怎么得出这个的数学归纳法知道但只能说是取巧啊我问的是怎么推出来的?难道只能猜?...
老师讲过忘了 好像要升次什么的
那怎么得出这个的 数学归纳法知道 但只能说是取巧啊 我问的是怎么推出来的?难道只能猜? 展开
那怎么得出这个的 数学归纳法知道 但只能说是取巧啊 我问的是怎么推出来的?难道只能猜? 展开
4个回答
展开全部
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
展开全部
你只需按照如下过程证明就可以
n=1 正确
n=k-1 正确
n=k 正确
公式就正确
n=1 正确
n=k-1 正确
n=k 正确
公式就正确
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用数学归纳法
n=1时成立
假设对于n=k成立,则去证明n=k+1成立即可。
n=1时成立
假设对于n=k成立,则去证明n=k+1成立即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
看二楼的解法吧,他写的很对,利用立方差公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询