已知圆C:x²+(y-1)²=5,直线L:mx-y+1-m=0,设该直线与圆相交于AB两点,若|AB|=√17,求L的倾斜

再求直线L中,截圆所得的弦最长及最短时的直线方程。... 再求直线L中,截圆所得的弦最长及最短时的直线方程。 展开
littlepigus
2011-08-21 · TA获得超过7315个赞
知道大有可为答主
回答量:2082
采纳率:0%
帮助的人:3655万
展开全部
mx-y+1-m=0 =>y=mx+1-m
代入圆方程 =>
x²+(mx-m)²=5 =>
(1+m²)x²-2m²x+m²-5=0 (1)
设两交点为(x1,y1)(x2,y2)
|AB|=根号[(x2-x1)^2+(y2-y1)^2]=根号(1+m²)|x2-x1| (x2,x1为方程1的两个根)
|x2-x1|=根号[(x1+x2)^2-4x1x2]=根号{2m²/(1+m²)]^2-4(m²-5)/(1+m²)}=√17/根号(1+m²)
=>(2m²)^2-4(m²-5)(1+m²)=17(1+m²)
=>3-m²=0 m=根号3,负根号3.(即为斜率)

|AB|=根号[4m^4/(1+m²)-4(m²-5)]=根号[(20+16m²)/(1+m^2)]=根号[16+4/(1+m^2)]
=> m=0 |AB|=20 取最大值
m=无穷大时,|AB|=16 取最小值
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式