10和15题怎么做
(10)
1/[x²(1+x)]=1/x² + 1/(x+1) -1/x
原式=-1/x + ln(1+x) -lnx
=-1/x +ln[(1+x)/x]
=-1/x+ln[1/x +1] |(+∞,2)
=0+0-(-1/2+ln3/2)
=1/2+ ln(3/2)
(15)
令arctanx=u,则x=tanu
x:1→∞,则u:π/4→π/2
∫[1:+∞] (arctanx/x²)dx
=∫[π/4:π/2] (u/tan²u)d(tanu)
=∫[π/4:π/2] (u/tan²u)·sec²udu
=∫[π/4:π/2] (u·csc²u)du
=-∫[π/4:π/2] ud(cotu)
=-ucotu|[π/4:π/2]+∫[π/4:π/2]cotudu
=-[(π/2)·cot(π/2)-(π/4)·cot(π/4)]+∫[π/4:π/2](cosu/sinu)du
=-[(π/2)·0-(π/4)·1]+∫[π/4:π/2](1/sinu)d(sinu)
=π/4 +ln|sinu||[π/4:π/2]
=π/4+ln|sinπ/2|-ln|sinπ/4|
=π/4+ln1 -ln(√2/2)
=π/4 +0 +½ln2
=(π+2ln2)/4
或者先求不定积分,自己再算下上下限