求证:在五个不同的自然数中,一定有四个这样的数abcd使得(a-b)(c-d)能够被6整除
2017-11-30
展开全部
若使得a-b=2,c-d=3,(a-b)(c-d)=6,可被6整除。
可设a=3,则b=1,c=5,则d=2,可见这4个自然数是可以使此等式成立的,可证。
可设a=3,则b=1,c=5,则d=2,可见这4个自然数是可以使此等式成立的,可证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。
说明
0/200