如图所示,在三角形ABC中,AB=AC=4,P为BC边上任意一点

(1)证明:AP^2+PB*PC=16(2)若BC边上有100个不同的点(不与B和C重合)P1、P2……P100,设Mi=APi^2+PiB*PC(i=1,2……,100... (1)证明:AP^2+PB*PC=16
(2)若BC边上有100个不同的点(不与B和C重合)P1、P2……P100,设Mi=APi^2+PiB*PC(i=1,2……,100),求M1+M2+M3……+M100的值
展开
nzstnzst
2007-07-19 · 知道合伙人教育行家
nzstnzst
知道合伙人教育行家
采纳数:386 获赞数:4357
数学还算过得去,多年专注高中数学的编辑工作

向TA提问 私信TA
展开全部
1、作BC中点O,连接AO,有BO=CO,设P在OC上,有BP=BO+OP,CP=CO-OP=BO-OP,则BP*CP=BO^2-OP^2,而AB^2=AO^2+BO^2,则16=AB^2=(AO^2+OP^2)+(BO^2-OP^2)=AP^2+BP*CP。

2、由P的任意性知:Mi=16,答案=1600
倾听雨落的花季
2012-09-25 · TA获得超过326个赞
知道答主
回答量:53
采纳率:0%
帮助的人:16万
展开全部
1、作AD垂直BC于D
在Rt△ADP中,
AP²=AD²+DP²
在Rt△ABD中,
AB²=BD²+AD²
∴AB²-AP²=(BD²+AD²)-(AD²+DP²)=BD²-DP²=(BD-DP)×(BD+DP)
∵AB=AC=4且AD垂直BC
∴BD=CD
∴BD-DP=PC,BD+DP=BP
∴AB²-AP²=BP×PC

2、M1+M2+M3……+M100
=(AP1²+P1B×P1C)+(AP2²+P2B×P2C)……(AP100²+P100B×P100C)
=(AP1²+AB²-AP1²)+(AP2²+AB²-AP2²)……(AP100²+AB²-AP100)
=100AB²
∵AB=4
∴AB²=16
∴M1+M2+M3……+M100=100AB²=100×16=1600
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式