如图所示,在三角形ABC中,AB=AC=4,P为BC边上任意一点
(1)证明:AP^2+PB*PC=16(2)若BC边上有100个不同的点(不与B和C重合)P1、P2……P100,设Mi=APi^2+PiB*PC(i=1,2……,100...
(1)证明:AP^2+PB*PC=16
(2)若BC边上有100个不同的点(不与B和C重合)P1、P2……P100,设Mi=APi^2+PiB*PC(i=1,2……,100),求M1+M2+M3……+M100的值 展开
(2)若BC边上有100个不同的点(不与B和C重合)P1、P2……P100,设Mi=APi^2+PiB*PC(i=1,2……,100),求M1+M2+M3……+M100的值 展开
2个回答
展开全部
1、作AD垂直BC于D
在Rt△ADP中,
AP²=AD²+DP²
在Rt△ABD中,
AB²=BD²+AD²
∴AB²-AP²=(BD²+AD²)-(AD²+DP²)=BD²-DP²=(BD-DP)×(BD+DP)
∵AB=AC=4且AD垂直BC
∴BD=CD
∴BD-DP=PC,BD+DP=BP
∴AB²-AP²=BP×PC
2、M1+M2+M3……+M100
=(AP1²+P1B×P1C)+(AP2²+P2B×P2C)……(AP100²+P100B×P100C)
=(AP1²+AB²-AP1²)+(AP2²+AB²-AP2²)……(AP100²+AB²-AP100)
=100AB²
∵AB=4
∴AB²=16
∴M1+M2+M3……+M100=100AB²=100×16=1600
在Rt△ADP中,
AP²=AD²+DP²
在Rt△ABD中,
AB²=BD²+AD²
∴AB²-AP²=(BD²+AD²)-(AD²+DP²)=BD²-DP²=(BD-DP)×(BD+DP)
∵AB=AC=4且AD垂直BC
∴BD=CD
∴BD-DP=PC,BD+DP=BP
∴AB²-AP²=BP×PC
2、M1+M2+M3……+M100
=(AP1²+P1B×P1C)+(AP2²+P2B×P2C)……(AP100²+P100B×P100C)
=(AP1²+AB²-AP1²)+(AP2²+AB²-AP2²)……(AP100²+AB²-AP100)
=100AB²
∵AB=4
∴AB²=16
∴M1+M2+M3……+M100=100AB²=100×16=1600
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询