几道初中几何题,求证明
2。已知△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC,试说明AB=BC+CD
3。如图,已知BD为等腰Rt△ABC的腰AC的中线,CE⊥BD且分别交BD,BA于E和F,则角ADF等于多少度?
(不能传图,请谅解) 展开
2011-08-23 · 知道合伙人教育行家
作OE⊥AB于点E,OF⊥CD于点F,连接OP
∴DF=1/2CD,DE=1/2AB
∵AB=CD
∴DF=BE,OF=OE
易证△POE≌△POF(HL)
∴PF=PE
∵DF=BE
∴PD=PB
2,证明:
作DE⊥AB于点E
则∠C=∠BED=90°
∵∠CBD=∠EBD,BD=BD
∴△BCD≌△BED
∴CD=DE,BC=BE
∵△ABC是等腰直角三角形
∴∠A=45°
∴DE=AE
∴AE=CD
∴AB=BE+AE=BC+CD
3,http://zhidao.baidu.com/question/307824394.html
2、CD=CB/(根号2+1),分母有理化得CD=CB×(根号2-1)又因为BC=根号2×CB,即得
3、此题有误
因为:BD平分∠ABC
所以:∠ABD=∠DBC
因为:BD为公共边,
所以Rt△BCD和Rt△BED中全等
所以DE=DC,BE=BC,
所以AB=AE+BE=DE+BC
所以PB=PD
2.作 DE 垂直于AB 于点E 则由题目条件易证:Rt △BCD ≌△BED (AAS) 则 BC =BE
CD=ED 有条件可知∠A=45° ∠AED=90° 所以△AED为等腰直角三角形 所以DE=AE
所以CD =AE 又因为 AD= AE +BE 所以AB=BC+CD
1.如图所示,连接BD。
证明:因为 AB=CD (已知)
所以 弧AB=弧CD (在同圆内,等弦所对应的弧相等)
所以 弧AB-弧BD=弧CD-弧BD(等量关系)
即 弧AD=弧BC
所以 ∠ABD=∠BCD(在同圆内,等弧所对应的角相等)
所以 BP=PD(等角对等边)
2. 图略。过D点,作DF⊥AB,交AB于F点。
因为 BD平分∠ABC,且AC⊥BC,AB⊥DF
所以 CD=DF,BC=BF (角平分线上的点,到两边的距离相等)(全等)
又因为 ABC是等腰直角三角形
所以 ∠A=45°
所以 ADF也是等腰直角三角形
所以 AF=DF
又因为 AB=AF+BF
所以 AB=CD+BC
3.不好意思,没有图,不清楚是哪个角为90度
故,无法回答
如定要回答,就要分类讨论了
1、证明:
如图,作OE⊥AB于点E,OF⊥CD于点F,连接OP
∴DF=1/2CD,BE=1/2AB,∴DF=BE
∵AB=CD
∴OF=OE
易证△POE≌△POF(HL)
∴PF=PE
∵DF=BE
∴PD=PB,命题得证。
2、证明:
作DE⊥AB于点E
则∠C=∠BED=90°,又因为BD平分∠ABC,所以∠CBD=∠EBD,
又∵BD=BD
∴△BCD≌△BED
∴CD=DE,BC=BE
∵△ABC是等腰直角三角形
∴∠A=45°,又∠AED=90°,
∴DE=AE
∴AE=CD=DE
∴AB=BE+AE=BC+CD,命题得证。
3、证明:过点A作BC的平行线,交CF的延长线于G,则∠GAF=∠DAF=45°.
∠CBD=∠ACG(均为角BCE的余角)
又∵∠BCD=∠CAG=90°;BC=CA;
∴△BCD≌△CAG(ASA),∠BDC=∠G,AG=CD=AD。
又∵AF=AF,
∴△DAF≌△GAF(SAS),∠ADF=∠G=BDC=∠BCE=∠BDC
设BC=AC=2,则CD=1,tan∠CDB=BC/CD=2,∠CDB≈63.43°,则∠ADF约为63.43°.