展开全部
∫ (x+1)/(x^2-2x+5) dx
=(1/2)∫ (2x-2)/(x^2-2x+5) dx +2∫ dx/(x^2-2x+5)
=(1/2)ln|x^2-2x+5| +2∫ dx/(x^2-2x+5)
=(1/2)ln|x^2-2x+5| +arctanu[( x-1)/2] + C
consider
x^2-2x+5 =(x-1)^2 +4
let
x-1 = 2tanu
dx= 2(secu)^2 du
∫ dx/(x^2-2x+5)
= (1/2)∫ du
=(1/2) arctanu[( x-1)/2] + C
=(1/2)∫ (2x-2)/(x^2-2x+5) dx +2∫ dx/(x^2-2x+5)
=(1/2)ln|x^2-2x+5| +2∫ dx/(x^2-2x+5)
=(1/2)ln|x^2-2x+5| +arctanu[( x-1)/2] + C
consider
x^2-2x+5 =(x-1)^2 +4
let
x-1 = 2tanu
dx= 2(secu)^2 du
∫ dx/(x^2-2x+5)
= (1/2)∫ du
=(1/2) arctanu[( x-1)/2] + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询