4个回答
展开全部
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.
对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质
a^2=b^2+c^2-2*b*c*CosA
b^2=a^2+c^2-2*a*c*CosB
c^2=a^2+b^2-2*a*b*CosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc
证明:
如图:
∵a=b-c
∴a^2=(b-c)^2 (证明中前面所写的a,b,c皆为向量,^2为平方)拆开即a^2=b^2+c^2-2bc
再拆开,得a^2=b^2+c^2-2*b*c*CosA
同理可证其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是将CosA移到右边表示一下。
---------------------------------------------------------------------------------------------------------------
平面几何证法:
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB
b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=(c^2+a^2-b^2)/2ac
从余弦定理和余弦函数的性质可以看出,
如果一个三角形两边的平方和等于第三
边的平方,那么第三边所对的角一定是直
角,如果小于第三边的平方,那么第三边所
对的角是钝角,如果大于第三边,那么第三边
所对的角是锐角.即,利用余弦定理,可以判断三角形形状。
同时,还可以用余弦定理求三角形边长取值范围。
这是百度上的,有些时候自己百度下就好了,希望能帮到你
对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质
a^2=b^2+c^2-2*b*c*CosA
b^2=a^2+c^2-2*a*c*CosB
c^2=a^2+b^2-2*a*b*CosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc
证明:
如图:
∵a=b-c
∴a^2=(b-c)^2 (证明中前面所写的a,b,c皆为向量,^2为平方)拆开即a^2=b^2+c^2-2bc
再拆开,得a^2=b^2+c^2-2*b*c*CosA
同理可证其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是将CosA移到右边表示一下。
---------------------------------------------------------------------------------------------------------------
平面几何证法:
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB
b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=(c^2+a^2-b^2)/2ac
从余弦定理和余弦函数的性质可以看出,
如果一个三角形两边的平方和等于第三
边的平方,那么第三边所对的角一定是直
角,如果小于第三边的平方,那么第三边所
对的角是钝角,如果大于第三边,那么第三边
所对的角是锐角.即,利用余弦定理,可以判断三角形形状。
同时,还可以用余弦定理求三角形边长取值范围。
这是百度上的,有些时候自己百度下就好了,希望能帮到你
参考资料: http://zhidao.baidu.com/question/46903751.html?an=0&si=3
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
余弦定理证明
平面向量证法
∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小)
∴c·c=(a+b)·(a+b) ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ) (以上粗体字符表示向量) 又∵Cos(π-θ)=-Cosθ ∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式) 再拆开,得c^2=a^2+b^2-2*a*b*CosC 即 CosC=(a^2+b^2-c^2)/2*a*b 同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。
平面几何证法
在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2 b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac
平面向量证法
∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小)
∴c·c=(a+b)·(a+b) ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ) (以上粗体字符表示向量) 又∵Cos(π-θ)=-Cosθ ∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式) 再拆开,得c^2=a^2+b^2-2*a*b*CosC 即 CosC=(a^2+b^2-c^2)/2*a*b 同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。
平面几何证法
在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2 b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-08-23
展开全部
向量法:在三角形ABC中 AB向量+BC向量=AC向量 两边平方 |AB|^2+|BC|^2+2
|AB|*|BC|cosα=|AC|^2 α是∠ABC的补角 所以|AB|^2+|BC|^2-2
|AB|*|BC|cos∠ABC=|AC|^2 即余弦定理 这是较为简洁的证法
|AB|*|BC|cosα=|AC|^2 α是∠ABC的补角 所以|AB|^2+|BC|^2-2
|AB|*|BC|cos∠ABC=|AC|^2 即余弦定理 这是较为简洁的证法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用 向量 正
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询