3个回答
展开全部
(4)y = e^(-x/y),
解法 1 :两边微分得
dy = e^(-x/y)[-(ydx-xdy)]/y^2
y^2dy = xe^(-x/y)dy - ye^(-x/y)dx
解得 dy = ye^(-x/y)dx/[xe^(-x/y)-y^2]
解法 2 :两边对 x 求导,得
y' = - e^(-x/y)(y-xy')/y^2, y'y^2= -ye^(-x/y) + xy'e^(-x/y)
解得 y' = ye^(-x/y)/[xe^(-x/y)-y^2]
则 dy = y'dx = ye^(-x/y)dx/[xe^(-x/y)-y^2]
解法 1 :两边微分得
dy = e^(-x/y)[-(ydx-xdy)]/y^2
y^2dy = xe^(-x/y)dy - ye^(-x/y)dx
解得 dy = ye^(-x/y)dx/[xe^(-x/y)-y^2]
解法 2 :两边对 x 求导,得
y' = - e^(-x/y)(y-xy')/y^2, y'y^2= -ye^(-x/y) + xy'e^(-x/y)
解得 y' = ye^(-x/y)/[xe^(-x/y)-y^2]
则 dy = y'dx = ye^(-x/y)dx/[xe^(-x/y)-y^2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询