1. A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},当B含于A时求M的范围
2.A={x|1<ax<2},B={x||x|<1},求当A含于B时,A的范围。请各位高手详细解答,在线等!请将详细解答步骤告诉我哈!跪求大侠吗?急急急!...
2.A={x|1<ax<2},B={x||x|<1},求当A含于B时,A的范围。
请各位高手详细解答,在线等!
请将详细解答步骤告诉我哈!跪求大侠吗?急急急! 展开
请各位高手详细解答,在线等!
请将详细解答步骤告诉我哈!跪求大侠吗?急急急! 展开
8个回答
展开全部
1、
①若集合B是空集,即:2m-1>m+1 ====>>>>> m>2时,满足要求;
②若集合B不是空集,即m≤2时,因B包含于A,则:-3≤2m-1且m+1≤4
m≥-1且m≤3
从而此时有:-1≤m≤2
综合上述,有:m≥-1
2、
①若a=0,显然不行;
②若a<0,则A={x|2/a<x<1/a},则:-1≤2/a且1/a≤1
a≤-2且a≤1
此时,有:a≤-2
③若a>0,则:A={x|1/a<x<2/a},则:-1≤1/a且2/a≤1
a≥-1且a≥2
此时,有:a≥2
综合上述,有:a≥2或a≤-2
①若集合B是空集,即:2m-1>m+1 ====>>>>> m>2时,满足要求;
②若集合B不是空集,即m≤2时,因B包含于A,则:-3≤2m-1且m+1≤4
m≥-1且m≤3
从而此时有:-1≤m≤2
综合上述,有:m≥-1
2、
①若a=0,显然不行;
②若a<0,则A={x|2/a<x<1/a},则:-1≤2/a且1/a≤1
a≤-2且a≤1
此时,有:a≤-2
③若a>0,则:A={x|1/a<x<2/a},则:-1≤1/a且2/a≤1
a≥-1且a≥2
此时,有:a≥2
综合上述,有:a≥2或a≤-2
展开全部
1、B含于A 即A包含B 那么2m-1≤-3 且 m+1≤4 求得:m≤-1
2、因为B={x||x|<1},所以-1<x<1
当a=0时 A为空集 含于B成立
a>0时 1/a<x<2/a -1<1/a 1>2/a 求得 a>2
a<0时 2/a<x<1/a -1<2/a 1>2/a 求得-2<a<2 从而 -2<a<0
综上 -2<a<=0 或a>2
2、因为B={x||x|<1},所以-1<x<1
当a=0时 A为空集 含于B成立
a>0时 1/a<x<2/a -1<1/a 1>2/a 求得 a>2
a<0时 2/a<x<1/a -1<2/a 1>2/a 求得-2<a<2 从而 -2<a<0
综上 -2<a<=0 或a>2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2.A含于B,说明A是B的子集。
A=空集时,满足。a=0
B=(-1,1),
a>0时,A=(a分之1,a分之2).a分之1>=-1,a分之2<=1,解得a>=2。
a<0时,a分之2>=-1,a分之1<=1,解得a<=-2。
综合得a=0或者a>=2或者a<=-2。
A=空集时,满足。a=0
B=(-1,1),
a>0时,A=(a分之1,a分之2).a分之1>=-1,a分之2<=1,解得a>=2。
a<0时,a分之2>=-1,a分之1<=1,解得a<=-2。
综合得a=0或者a>=2或者a<=-2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.-3≤2m-1且m+1≤4,得到-1≤m≤3
2.B:-1<x<1.
当a<0时,A化为2/a<x<1/a,因为1/a<0,只需-1≤2/a,即-2≤a<0
当a>0时,A化为1/a<x<2/a,同理只需2/a≤1,得2≤a
综合即得解
2.B:-1<x<1.
当a<0时,A化为2/a<x<1/a,因为1/a<0,只需-1≤2/a,即-2≤a<0
当a>0时,A化为1/a<x<2/a,同理只需2/a≤1,得2≤a
综合即得解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
B={x||x|<1}=B={x|-1<x<1},a<0时,A={x|1<ax<2}=A={x|2/a<x<1/a},2/a>-1=>a<-2;同理,a>0时,可以得出a>2,所以a<-2或者a>2。
A={x|1<ax<2}。
A={x|1<ax<2}。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵B包含于A,则2m-1≥-3且m+1≤4
解得:-1≤m≤3
∴{m|-1≤m≤3}
解得:-1≤m≤3
∴{m|-1≤m≤3}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询