2011-08-26
展开全部
证明:
A、B相似,则存在可逆矩阵T,使得
A=T^{-1}BT
从而
det(A-λE)
=det(T^{-1}BT-λE)
=det(T^{-1}BT-λT^{-1}T)
=det(T^{-1}(B-λE)T)
=det(B-λE)
因此A、B有相同特征值,所以有相同特征多项式
A、B相似,则存在可逆矩阵T,使得
A=T^{-1}BT
从而
det(A-λE)
=det(T^{-1}BT-λE)
=det(T^{-1}BT-λT^{-1}T)
=det(T^{-1}(B-λE)T)
=det(B-λE)
因此A、B有相同特征值,所以有相同特征多项式
追问
请问“^”这个是什么,在试卷上也是这么写嘛?
追答
我是想写T逆,在这里没法实现上标,只好用TEX语言了,试卷上该怎么写就怎么写
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询