设a是元素全为1的n阶方阵

设A是n(n>=2)阶方阵且A的全部元素都是1,E是n阶单位矩阵,证明(E-A)^-1=E-1/(n+1)*A... 设A是n(n>=2)阶方阵且A的全部元素都是1,E是n阶单位矩阵,证明(E-A)^-1=E-1/(n+1)*A 展开
 我来答
刑梦沙傲晴
2020-07-18 · TA获得超过1143个赞
知道小有建树答主
回答量:1816
采纳率:100%
帮助的人:8.4万
展开全部
证明: 因为 A的全部元素都是1
所以 A^2 = nA.
所以 (E-A) [ E-1/(n-1)A ]
= E-1/(n-1)A - A + 1/(n-1)A^2
= E-1/(n-1)A - A + n/(n-1)A
= E.
所以 E-A 可逆, 且 (E-A)^-1 = E-1/(n-1)A.
原题有误. 看看已知中 n>=2, n-1 才靠谱哈.
满意请采纳^_^
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式