
1个回答
展开全部
解:
令n=1
a1+(1/2)an=1 (3/2)an=1 an=2/3
Sn+(1/2)an=1
Sn-1+(1/2)a(n-1)=1
(3/2)an-(1/2)a(n-1)=0
3an=a(n-1)
an/a(n-1)=1/3
数列{an}是以2/3为首项,1/3为公比的等比数列。
an=(2/3)(1/3)^(n-1)=2/3ⁿ
数列{an}的通项公式为an=2/3ⁿ。
令n=1
a1+(1/2)an=1 (3/2)an=1 an=2/3
Sn+(1/2)an=1
Sn-1+(1/2)a(n-1)=1
(3/2)an-(1/2)a(n-1)=0
3an=a(n-1)
an/a(n-1)=1/3
数列{an}是以2/3为首项,1/3为公比的等比数列。
an=(2/3)(1/3)^(n-1)=2/3ⁿ
数列{an}的通项公式为an=2/3ⁿ。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询