已知A为n阶方阵,且满足A^2-3A-4E=0,证明:A可逆,并求A-1次方

 我来答
黑科技1718
2022-07-11 · TA获得超过5828个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:79.9万
展开全部
A^2-3A-4E=0
A^2-3EA=4E
(A-3E)A=4E
所以|A-3E||A|=|4E|=4^n≠0
所以|A|≠0
故A可逆
因为(A-3E)A=4E
所以[(A-3E)/4]A=E
所以A^(-1)=(A-3E)/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式