正切函数的图像是什么样子的?
展开全部
y=tanx的图像如下:
1,tanx的取值范围是(-π/2+kπ,π/2+kπ)。
注意:x≠-π/2+kπ,x≠π/2+kπ。
2,tanx在它的单个周期内是单调递增的。
3,tanx是周期函数,它的周期为π。
正切函数的性质:
1、定义域:{x|x≠(π/2)+kπ,k∈Z}。
2、值域:实数集R。
3、奇偶性:奇函数。
4、单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数。
5、周期性:最小正周期π(可用T=π/|ω|来求)。
6、最值:无最大值与最小值。
7、零点:kπ,k∈Z。
8、对称性:无轴对称:无对称轴中心对称:关于点(kπ/2+π/2,0)对称(k∈Z)。
9、奇偶性:由tan(-x)=-tan(x),知正切函数是奇函数,它的图象关于原点呈中心对称。
10、图像(如图所示)实际上,正切曲线除了原点是它的对称中心以外,所有x=(n/2)π (n∈Z) 都是它的对称中心。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询