几何证明题 如何证明梯形的中位线平行与两底且等于两底和的一半?
展开全部
梯形ABCD,左上为A,左下为B,右下C
E为AB的中点,F为CD的中点,连接EF,
求证:EF平行两底且等于两底和的一半.
证明:连接AF,并且延长AF与BC的延长线交于O
在△ADF和△FCO中
因为:AD//BC
所以:角ADF=角OCF
因为:角AFD=角OFC DF=DC
所以:△ADF和△FCO全等 CO=AD OF=AF
延长EF到H,使EF=FH,连接OH.
在△AEF和△OHF中
OF=AF EF=FH 角OFH=角AFE
所以:△AEF和△OHF全等
AE=OH 角EAF=角HOF
所以:OH//AE//AB
因为:AE=EB 故:EB=OH
EB=OH OH//AE//AB
所以:EBOH是平行四边形
EH//BO EH=BO
因为:EF=FH EH=2EF=OB
OB=BC+CO CO=AD
所以:2EF=BC+AD EF=(BC+AD)÷2
梯形的中位线平行与上下两底且等于两底和的一半
E为AB的中点,F为CD的中点,连接EF,
求证:EF平行两底且等于两底和的一半.
证明:连接AF,并且延长AF与BC的延长线交于O
在△ADF和△FCO中
因为:AD//BC
所以:角ADF=角OCF
因为:角AFD=角OFC DF=DC
所以:△ADF和△FCO全等 CO=AD OF=AF
延长EF到H,使EF=FH,连接OH.
在△AEF和△OHF中
OF=AF EF=FH 角OFH=角AFE
所以:△AEF和△OHF全等
AE=OH 角EAF=角HOF
所以:OH//AE//AB
因为:AE=EB 故:EB=OH
EB=OH OH//AE//AB
所以:EBOH是平行四边形
EH//BO EH=BO
因为:EF=FH EH=2EF=OB
OB=BC+CO CO=AD
所以:2EF=BC+AD EF=(BC+AD)÷2
梯形的中位线平行与上下两底且等于两底和的一半
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询