跪求高数大神 抛物面z=x^2+y^2被平面x+y++z=1截成一个椭圆,求该椭圆的长半轴和短半轴(用拉格朗日乘子)
长半轴为√(3(2+√3)),短半轴是√(3(2-√3)),用拉格朗日乘数法做的。
^【解析】z=x^2+y^2
x+y+z=1
椭圆方程为(x+1/2)^2+(y+1/2)^2=3/2
z=1-x-y
原点到这椭圆上点的距离r=根号{x^2+y^2+z^2}
极值点坐标满足dr/dx=0
dr/dx=[2x+2y*dy/dx+2z*dz/dx]/2r
=x+y*dy/dx+(1-x-y)*(-1-dy/dx)
=(2x+y-1)+(x+2y-1)*dy/dx
对椭圆方程求导2*(x+1/2)+2*(y+1/2)*dy/dx=0
dy/dx=-(2x+1)/(2y+1)
dr/dx=(2x+y-1)-(x+2y-1)*(2x+1)/(2y+1)
=(2x+2y-3)*(y-x)/(2y+1)
dr/dx=0, => (2x+2y-3)*(y-x)=0
x=y=+(-)根号3/2-1/2 ; x+y=3/2>1(舍去)
r=根号{x^2+y^2+z^2}=根号{2x^2+4y^2}=根号{(11+(-)6*根号3)/2}
r(min)=根号{(11-6*根号3)/2}
r(max)=根号{(11+6*根号3)/2}
扩展资料:
令F(x,y,λ)对x和y和λ的一阶偏导数等于零,即
F'x=ƒ'x(x,y)+λφ'x(x,y)=0 [1]
F'y=ƒ'y(x,y)+λφ'y(x,y)=0
F'λ=φ(x,y)=0
由上述方程组解出x,y及λ,如此求得的(x,y),就是函数z=ƒ(x,y)在附加条件φ(x,y)=0下的可能极值点。
若这样的点只有一个,由实际问题可直接确定此即所求的点。
参考资料来源:百度百科-拉格朗日乘数法