外接球半径怎么求?
1个回答
展开全部
外接球半径万能公式:R=√[R_1^2+R_2^2- (L^2)/4]。若相互垂直的两凸多边形的外接圆半径分别为R_1,R_2,两外接圆公共弦长为L,则由两凸多边形顶点连接而成的几何体的外接球半径。
方法:
设A-BCD是正三棱锥,侧棱长为a,底面边长为b,
则外接球的球心一定在这个三棱锥的高上。设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做侧棱AD的垂直平分线交三棱锥的高AM于O,则0就是外接球的球心,AO,DO是外接球的半径。
设AO=DO=R。
则,DM=2/3DE=2/3*2分之根号3倍的b=b/根号3。
AM=根号(a^2-b^2/3)。
OM=AM-A0=根号(a^2-b^2/3)-R。
由DO^2=OM^2+DM^2得:R=根号3倍的a^2÷2倍的根号(3a^2-b^2)。
亚远景信息科技
2024-12-11 广告
2024-12-11 广告
上海亚远景信息科技有限公司是国内汽车行业咨询及评估领军机构之一,深耕于ASPICE、敏捷SPICE、ISO26262功能安全、ISO21434车辆网络安全领域,拥有20年以上的行业经验,专精于培训、咨询及评估服务,广受全球车厂及供应商赞誉,...
点击进入详情页
本回答由亚远景信息科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询