已知:如图,O为直线AB上一点,OE、OC、OF是射线,OE垂直OF,,若∠BOC等于2∠COE,∠AOF的度数比∠ COE的

度数的4倍小8度,求角COE的度数。帮帮忙... 度数的4倍小8度,求角COE的度数。
帮帮忙
展开
翎子玥
2013-01-07 · TA获得超过431个赞
知道答主
回答量:179
采纳率:0%
帮助的人:14.8万
展开全部
分析:由已知OE⊥OF,得出∠EOF=90°,则∠BOE+∠AOF=90°,又由∠BOC=2∠COE,得∠BOE=∠COE,即得∠COE+∠AOF=90°,再根据,∠AOF的度数比∠COE的度数的4倍小8度,用∠COE表示出∠AOF,
可求得∠COE.
解答:解:
∵OE⊥OF,
∴∠EOF=90°,
∴∠BOE+∠AOF=90°,
∵∠BOC=2∠COE,
∴∠BOE=∠COE,
∴∠COE+∠AOF=90°,
∵∠AOF的度数比∠COE的度数的4倍小8度,
∴∠AOF=4∠COE-8°,
∴∠COE+4∠COE-8°=90°,
即∠COE=16.4°.

参考资料: ME!!!

zx519415
2011-08-31
知道答主
回答量:20
采纳率:0%
帮助的人:16.9万
展开全部
设COE的度数为Q,所以AOE为4Q-8-90,EOF=90,BOF=2Q-90,所以AOE+EOF+BOF=180,所以Q=278/7
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
freez紫月
2012-06-26 · TA获得超过182个赞
知道答主
回答量:36
采纳率:0%
帮助的人:10.7万
展开全部
设COE的度数为Q,所以AOE为4Q-8-90,EOF=90,BOF=2Q-90,所以AOE+EOF+BOF=180,所以Q=278/7
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
卯雅云7O
2011-09-07 · TA获得超过234个赞
知道小有建树答主
回答量:169
采纳率:0%
帮助的人:99.9万
展开全部
有意思,图呢?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式