函数求极限的方法总结

 我来答
玲玲教育达人
2022-11-03 · 超过64用户采纳过TA的回答
知道小有建树答主
回答量:230
采纳率:100%
帮助的人:4.1万
展开全部

函数求极限的方法总结为:

1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。

2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法。

3、运用两个特别极限。

4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小。比无穷小,分子分母还必须是连续可导函数。

5、用Mclaurin(麦克劳琳)级数展开,而国内普遍译为Taylor(泰勒)展开。

6、等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。

7、夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。

8、特殊情况下,化为积分计算。

函数极限的概念

数列{xn}:xn=f(n);

lim n->∞,xn=a:当自变量n取正数而无限增大时,f(n)无限接近于确定的数a。

函数的极限:在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这一变化中的函数的极限。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式