考研数学求极限这道题怎么做?
3个回答
展开全部
x->0
分子
√(1+x^2) = 1+ (1/2)x^2 +o(x^2)
x+√(1+x^2) =1+x+ (1/2)x^2 +o(x^2)
ln[x+√(1+x^2)]
=ln[1+x+ (1/2)x^2 +o(x^2)]
=[x+ (1/2)x^2] -(1/2)[x+ (1/2)x^2]^2 +o(x^2)
=[x+ (1/2)x^2] -(1/2)[x^2+o(x^2)] +o(x^2)
= x +o(x^2)
ln(1+x) = x -(1/2)x^2 +o(x^2)
ln(1+x) -ln[x+√(1+x^2)] =-(1/2)x^2 +o(x^2)
分母
ln(x+√(1+x^2)) = ln(1+x+o(x)) = x+o(x)
ln(1+x) = x+o(x)
ln(1+x) . ln(x+√(1+x^2)) =x^2 +o(x^2)
//
lim(x->0) [ 1/ln(x+√(1+x^2)) - 1/ln(1+x) ]
=lim(x->0) [ ln(1+x) - ln(x+√(1+x^2)) ]/[ ln(x+√(1+x^2)).ln(1+x) ]
=lim(x->0) -(1/2)x^2/x^2
=-1/2
2022-10-29 · 知道合伙人教育行家
关注
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询