什么是直线的“点法向”式方程?
展开全部
点法向式就是由直线上一点的坐标和与这条直线的法向量确定的------((x0,y0)为直线上一点,{u,v}为直线的法向向量)。
(x-x0)·u=(y-y0)·v,且u,v不全为零的方程,称为点法向式方程。该方程可以表示所有直线。
注意
直线一般方程可理解为两个平面方程的交线,可以分别写出两平面的法向量n1、n2,根据法向量的定义,n1和n2垂直于本平面的所有直线。
待求直线为两平面交线,所以必然垂直于n1和n2;根据向量叉乘的几何意义,直线的方向向量L必然平行于n1×n2,可直接令L=n1×n2。
再从方程中求出直线上的任意一点(例如可令z=0,直线方程变成二元一次方程组,解出x和y,就得到一个点坐标)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询