半径为R的圆外接于△ABC,且2R(sin^2A-sin^2C)=(根号3*a-b)sinB,求角C
展开全部
2R(sinA+sinC)(sinA-sinC)=(√3a-b)sinB
有正弦定理
2RsinA=a,2RsinC=c
所以(a+c)(sinA-sinC)=(√3a-b)sinB
sinA=a/2R,sinB=b/2R,sinC=c/2R
所以(a+c)(a-c)=(√3a-b)b
a^2-c^2=√3ab-b^2
a^2+b^2-c^2=√3ab
cosC=(a^2+b^2-c^2)/2ab=√3/2
C=30度
有正弦定理
2RsinA=a,2RsinC=c
所以(a+c)(sinA-sinC)=(√3a-b)sinB
sinA=a/2R,sinB=b/2R,sinC=c/2R
所以(a+c)(a-c)=(√3a-b)b
a^2-c^2=√3ab-b^2
a^2+b^2-c^2=√3ab
cosC=(a^2+b^2-c^2)/2ab=√3/2
C=30度
参考资料: http://zhidao.baidu.com/question/113991145.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询