展开全部
设f(x)=x^2-mx-m+3
因为方程的两根都在-4和0之间
所以f(-4)=3m+19≥0,f(0)=-m+3≥0,Δ=m^2+4m-12≥0
所以'm≥-19/3','m≤3','m≤-6或m≥2'
三者取交集得-19/3≤m≤-6或2≤m≤3
即m的取值范围是{m|-19/3≤m≤-6或2≤m≤3}
如果不懂,请Hi我,祝学习愉快!
因为方程的两根都在-4和0之间
所以f(-4)=3m+19≥0,f(0)=-m+3≥0,Δ=m^2+4m-12≥0
所以'm≥-19/3','m≤3','m≤-6或m≥2'
三者取交集得-19/3≤m≤-6或2≤m≤3
即m的取值范围是{m|-19/3≤m≤-6或2≤m≤3}
如果不懂,请Hi我,祝学习愉快!
追问
如果f(x)的对称轴在Y轴的右边呢?那不是不对么
追答
确实,我考虑不周
加个两根之和x1+x2=m<0
应该是这个{m|-19/3≤m≤-6}
展开全部
只要当x=-4和x=0时式子x^2-mx-m+3大于或者等于0就行了。
(-4)^2-(-4)m-m+3>=0和-m+3>=0
然后求解就行了~~
(-4)^2-(-4)m-m+3>=0和-m+3>=0
然后求解就行了~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-09-04
展开全部
对称轴x=m/2,所以-4≤m/2≤0,-8≤m≤0
方程开口向上,当x=0时代入,-m+3≥0,得m≤3当x=-4带入得16+4m-m+3≥0,即m≥-19/3
故得Δ=m^2+4m-12≥0 m≤-6或m≥2
19/3≤m≤-6
方程开口向上,当x=0时代入,-m+3≥0,得m≤3当x=-4带入得16+4m-m+3≥0,即m≥-19/3
故得Δ=m^2+4m-12≥0 m≤-6或m≥2
19/3≤m≤-6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询