3个回答
展开全部
26、如图,矩形ABCD中,AB=6,BC=2 ,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.考点:相似三角形的判定与性质;根据实际问题列二次函数关系式;等腰三角形的性质;等边三角形的性质;矩形的性质;解直角三角形.专题:代数几何综合题;动点型;分类讨论.分析:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3-t,在Rt△CBF中,解直角三角形可求t的值;
(2)按照等边△EFG和矩形ABCD重叠部分的图形特点,分为0≤t<1,1≤t<3,3≤t<4,4≤t<6四种情况,分别写出函数关系式;
(3)存在.当△AOH是等腰三角形时,分为AH=AO=3,HA=HO,OH=OA三种情况,分别画出图形,根据特殊三角形的性质,列方程求t的嫌雹值.瞎仔解答:解:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3-t,在Rt△CBF中磨者汪,BC=2 ,tan∠CFB= ,
即tan60= ,
解得BF=2,即3-t=2,t=1,
∴当边FG恰好经过点C时,t=1;
(2)当0≤t<1时,S=2 t+4 ;
当1≤t<3时,S=- t2+3 t+ ;
当3≤t<4时,S=-4 t+20 ;
当4≤t<6时,S= t2-12 t+36 ;
(3)存在.
理由如下:在Rt△ABC中,tan∠CAB= = ,
∴∠CAB=30°,
又∵∠HEO=60°,
∴∠HAE=∠AHE=30°,
∴AE=HE=3-t或t-3,
1)当AH=AO=3时,(如图②),过点E作EM⊥AH于M,则AM= AH= ,
在Rt△AME中,cos∠MAE═ ,
即cos30°= ,
∴AE= ,即3-t= 或t-3= ,
∴t=3- 或t=3+ ,
2)当HA=HO时,(如图③)则∠HOA=∠HAO=30°,
又∵∠HEO=60°,
∴∠EHO=90°,EO=2HE=2AE,
又∵AE+EO=3,
∴AE+2AE=3,AE=1,
即3-t=1或t-3=1,
∴t=2或t=4;
3)当OH=OA时,(如图④),则∠OHA=∠OAH=30°,
∴∠HOB=60°=∠HEB,
∴点E和点O重合,
∴AE=3,即3-t=3或t-3=3,t=6(舍去)或t=0;
综上所述,存在5个这样的t值,使△AOH是等腰三角形,即t=3- 或t=3+ 或t=2或t=4或t=0.点评:本题考查了特殊三角形、矩形的性质,相似三角形的判定与性质,解直角三角形的有关知识.关键是根据特殊三角形的性质,分类讨论.
答题:zhangCF老师 显示解析体验训练收藏试题试题纠错下载试题
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.考点:相似三角形的判定与性质;根据实际问题列二次函数关系式;等腰三角形的性质;等边三角形的性质;矩形的性质;解直角三角形.专题:代数几何综合题;动点型;分类讨论.分析:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3-t,在Rt△CBF中,解直角三角形可求t的值;
(2)按照等边△EFG和矩形ABCD重叠部分的图形特点,分为0≤t<1,1≤t<3,3≤t<4,4≤t<6四种情况,分别写出函数关系式;
(3)存在.当△AOH是等腰三角形时,分为AH=AO=3,HA=HO,OH=OA三种情况,分别画出图形,根据特殊三角形的性质,列方程求t的嫌雹值.瞎仔解答:解:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3-t,在Rt△CBF中磨者汪,BC=2 ,tan∠CFB= ,
即tan60= ,
解得BF=2,即3-t=2,t=1,
∴当边FG恰好经过点C时,t=1;
(2)当0≤t<1时,S=2 t+4 ;
当1≤t<3时,S=- t2+3 t+ ;
当3≤t<4时,S=-4 t+20 ;
当4≤t<6时,S= t2-12 t+36 ;
(3)存在.
理由如下:在Rt△ABC中,tan∠CAB= = ,
∴∠CAB=30°,
又∵∠HEO=60°,
∴∠HAE=∠AHE=30°,
∴AE=HE=3-t或t-3,
1)当AH=AO=3时,(如图②),过点E作EM⊥AH于M,则AM= AH= ,
在Rt△AME中,cos∠MAE═ ,
即cos30°= ,
∴AE= ,即3-t= 或t-3= ,
∴t=3- 或t=3+ ,
2)当HA=HO时,(如图③)则∠HOA=∠HAO=30°,
又∵∠HEO=60°,
∴∠EHO=90°,EO=2HE=2AE,
又∵AE+EO=3,
∴AE+2AE=3,AE=1,
即3-t=1或t-3=1,
∴t=2或t=4;
3)当OH=OA时,(如图④),则∠OHA=∠OAH=30°,
∴∠HOB=60°=∠HEB,
∴点E和点O重合,
∴AE=3,即3-t=3或t-3=3,t=6(舍去)或t=0;
综上所述,存在5个这样的t值,使△AOH是等腰三角形,即t=3- 或t=3+ 或t=2或t=4或t=0.点评:本题考查了特殊三角形、矩形的性质,相似三角形的判定与性质,解直角三角形的有关知识.关键是根据特殊三角形的性质,分类讨论.
答题:zhangCF老师 显示解析体验训练收藏试题试题纠错下载试题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你皮陵最好买挑战中考数学压轴题(第五版)(华东师范大学燃厅戚出版社) 上伏灶面讲解很详细 还有光盘的老师讲解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)3.14x+3.14Y=628
y=200-X
y=200-X
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询