不等式最值问题
若abc∈R,且ab+bc+ac=1求1/a+1/b+1/c的最值请写出过程,O(∩_∩)O谢谢...
若abc∈R,且ab+bc+ac=1 求1/a+1/b+1/c的最值
请写出过程,O(∩_∩)O谢谢 展开
请写出过程,O(∩_∩)O谢谢 展开
2个回答
展开全部
先通分得
(ab+bc+ca)/abc=1/abc
只要求abc的范围。由算数大于等于几何平均:
三次√(ab*bc*ca)<=(ab+bc+ca)/3
(ab*bc*ca)<=[(ab+bc+ca)/3]^3
(abc)^2<=1/27
abc<=√3/9
.'.1/abc=>3√3
(ab+bc+ca)/abc=1/abc
只要求abc的范围。由算数大于等于几何平均:
三次√(ab*bc*ca)<=(ab+bc+ca)/3
(ab*bc*ca)<=[(ab+bc+ca)/3]^3
(abc)^2<=1/27
abc<=√3/9
.'.1/abc=>3√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
整定计算是继电保护中的一项重要工作,旨在通过分析计算和整定,确定保护配置方式和整定值,以满足电力系统安全稳定运行的要求。在进行整定计算时,需要考虑到电力系统的各种因素,如电压等级、线路长度、变压器容量、负载情况等等,以及各种保护设备的特性、...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
【【注:这里,可能少了一个条件,就是a,b,c均是正数。】】
解:
【1】
∵ab+bc+ca=1.且abc>0
∴两边同除以abc,可得
(1/a)+(1/b)+(1/c)=1/(abc).
【2】
由基本不等式可得
[(1/a)+(1/b)+(1/c)]³≧27/(abc)
∴结合上面的结果,可得
[(1/a)+(1/b)+(1/c)]²≧27
∴(1/a)+(1/b)+(1/c)≧3√3
等号仅当a=b=c=1/√3时取得。
∴[(1/a)+(1/b)+(1/c)]min=3√3
易知,原式无最大值。
解:
【1】
∵ab+bc+ca=1.且abc>0
∴两边同除以abc,可得
(1/a)+(1/b)+(1/c)=1/(abc).
【2】
由基本不等式可得
[(1/a)+(1/b)+(1/c)]³≧27/(abc)
∴结合上面的结果,可得
[(1/a)+(1/b)+(1/c)]²≧27
∴(1/a)+(1/b)+(1/c)≧3√3
等号仅当a=b=c=1/√3时取得。
∴[(1/a)+(1/b)+(1/c)]min=3√3
易知,原式无最大值。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询