如图,在三角形ABC和三角形DBC中,角ACB=角DBC=90°E是BC的中点,EF垂直AB,垂足为F,且AB=DE,
4个回答
展开全部
(1)证明
∵∠DBE=∠BFD=90°
∴∠EBF+∠DBF=∠BDF+∠DBF=90°
∴∠CBA=∠EDB
∵∠ACB=∠EBD=90°,AB=DE
∴△ACB≌△DBE
∴BD=BC
(2)
由(1)可得
△ACB≌△DBE
∴AC=BE,BD=BC
∵E是BC中点,BC=BD=8
∴BE=4
∴AC=4cm
∵∠DBE=∠BFD=90°
∴∠EBF+∠DBF=∠BDF+∠DBF=90°
∴∠CBA=∠EDB
∵∠ACB=∠EBD=90°,AB=DE
∴△ACB≌△DBE
∴BD=BC
(2)
由(1)可得
△ACB≌△DBE
∴AC=BE,BD=BC
∵E是BC中点,BC=BD=8
∴BE=4
∴AC=4cm
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
兄弟,木有图涅
追问
我不会画
追答
很好,那你还是好好学习吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询