如图,四边形ABCD是正方形。点G是BC上的任意一点,DE⊥AG于E。BF‖DE,且交AG于点F,求证:AF-BF=EF.
3个回答
展开全部
AD=AB,∠BAD=90°
∵DE⊥AG,
∴∠DEG=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF.
∵BF∥DE,
∴∠AFB=∠DEG=∠AED.
在△ABF与△DAE中, ∠AFB=∠AED∠ADE=∠BAF
AD=AB ∴△ABF≌△DAE(AAS).
∴BF=AE.
∵AF=AE+EF,
∴AF-BF=EF.
∵DE⊥AG,
∴∠DEG=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF.
∵BF∥DE,
∴∠AFB=∠DEG=∠AED.
在△ABF与△DAE中, ∠AFB=∠AED∠ADE=∠BAF
AD=AB ∴△ABF≌△DAE(AAS).
∴BF=AE.
∵AF=AE+EF,
∴AF-BF=EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
哈哈
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询