已知x^2+x+1=0,求 x^4+3x^3+5x^2+4x+1997的值已知x^2-13x+1=0,求x^4+1/x^4的个位数字
1个回答
展开全部
解:由x^2+x+1=0两边乘以x-1
得:
x^3=1
故:
x^4+3x^3+5x^2+4x+1997
=x+3+5x^2+4x+1997
=5x^2+5x+2000
=5(x^2+x+1)+1995=1995
x^4+1/x^4
=(x²+1/x²)²-2
=[(x+1/x)²-2]²-2
由x^2-13x+1=0
知x≠0
两边除以x
得x+1/x=13
故x^4+1/x^4=[(x+1/x)²-2]²-2
(x+1/x)²的个位数字是9
(x+1/x)²-2的个位数字是7
[(x+1/x)²-2]²的个位数字是9
故x^4+1/x^4=[(x+1/x)²-2]²-2的个位数字是7
得:
x^3=1
故:
x^4+3x^3+5x^2+4x+1997
=x+3+5x^2+4x+1997
=5x^2+5x+2000
=5(x^2+x+1)+1995=1995
x^4+1/x^4
=(x²+1/x²)²-2
=[(x+1/x)²-2]²-2
由x^2-13x+1=0
知x≠0
两边除以x
得x+1/x=13
故x^4+1/x^4=[(x+1/x)²-2]²-2
(x+1/x)²的个位数字是9
(x+1/x)²-2的个位数字是7
[(x+1/x)²-2]²的个位数字是9
故x^4+1/x^4=[(x+1/x)²-2]²-2的个位数字是7
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询