求下述微分方程的一般解
展开全部
解:设y'=p,则y''=pdp/dy
代入原方程得ypdp/dy-2p²-yp=0
==>p(ydp/dy-2p-y)=0
∴p=0,或ydp/dy-2p-y=0
当p=0时,y'=0 ==>y=C (C是积分常数)
当ydp/dy-2p-y=0时,
∵由ydp/dy-2p=0 ==>dp/p=2dy/y
==>ln│p│=2ln│y│+ln│C│ (C是积分常数)
==>p=Cy²
∴根据常数变易法,设ydp/dy-2p-y=0的解是p=C(y)y² (C(y)表示关于y的函数)
∵dp/dy=C'(y)y²+2yC(y)
代入方程得C'(y)=1/y² ==>C(y)=-1/y+C1 (C1是积分常数)
==>p=C1y²-y
∴ydp/dy-2p-y=0的通解是p=C1y²-y
==>y'=C1y²-y
==>dy/[y(C1y-1)]=dx
==>[C1/(C1y-1)-1/y]dy=dx
==>ln│C1y-1│-ln│y│=x+ln│C2│ (C2是积分常数)
==>y/(C1y-1)=C2e^x
==>y=C2(C1y-1)e^x
故原方程的通解是y=C或y=C2(C1y-1)e^x (C,C1,C2都是积分常数)。
代入原方程得ypdp/dy-2p²-yp=0
==>p(ydp/dy-2p-y)=0
∴p=0,或ydp/dy-2p-y=0
当p=0时,y'=0 ==>y=C (C是积分常数)
当ydp/dy-2p-y=0时,
∵由ydp/dy-2p=0 ==>dp/p=2dy/y
==>ln│p│=2ln│y│+ln│C│ (C是积分常数)
==>p=Cy²
∴根据常数变易法,设ydp/dy-2p-y=0的解是p=C(y)y² (C(y)表示关于y的函数)
∵dp/dy=C'(y)y²+2yC(y)
代入方程得C'(y)=1/y² ==>C(y)=-1/y+C1 (C1是积分常数)
==>p=C1y²-y
∴ydp/dy-2p-y=0的通解是p=C1y²-y
==>y'=C1y²-y
==>dy/[y(C1y-1)]=dx
==>[C1/(C1y-1)-1/y]dy=dx
==>ln│C1y-1│-ln│y│=x+ln│C2│ (C2是积分常数)
==>y/(C1y-1)=C2e^x
==>y=C2(C1y-1)e^x
故原方程的通解是y=C或y=C2(C1y-1)e^x (C,C1,C2都是积分常数)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询