![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
展开全部
解:圆的方程x²+y²-2y-1=0可化为:x²+(y-1)²=2,可得圆心坐标为(0,1),半径r=√2
则圆心到直线l:2x-y-1=0的距离为:
d=|-1-1|/√5=(2√5)/5
则由勾股定理得:(|AB|/2)²+d²=r²
即|AB|²/4 +4/5=2
|AB|²/4=6/5
|AB|²=24/5
|AB|=(2√30)/5
则圆心到直线l:2x-y-1=0的距离为:
d=|-1-1|/√5=(2√5)/5
则由勾股定理得:(|AB|/2)²+d²=r²
即|AB|²/4 +4/5=2
|AB|²/4=6/5
|AB|²=24/5
|AB|=(2√30)/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询